H. E. Sheshtawy, O. E. Moctar, T. Schellin, S. Natarajan
{"title":"一种优化的水平轴潮汐水轮机的数值研究","authors":"H. E. Sheshtawy, O. E. Moctar, T. Schellin, S. Natarajan","doi":"10.1115/omae2019-95722","DOIUrl":null,"url":null,"abstract":"\n A tidal stream turbine was designed using one of the optimised hydrofoils, whose lift-to-drag ratio at an angle of attack of 5.2 degrees was 4.5% higher than that of the reference hydrofoil. The incompressible Reynolds-averaged Navier Stokes equations in steady state were solved using k-ω (SST) turbulence model for the reference and optimised tidal stream turbines. The discretisation errors and the effect of different y+ values on the solution were analysed. Thrust and power coefficients of the modelled reference turbine were validated against experimental measurements. Output power and thrust of the reference and the optimised tidal turbines were compared. For a tip speed ratio of 3.0, the output power of the optimised tidal turbine was 8.27% higher than that of the reference turbine of the same thrust.","PeriodicalId":306681,"journal":{"name":"Volume 10: Ocean Renewable Energy","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Numerical Investigation of an Optimised Horizontal Axis Tidal Stream Turbine\",\"authors\":\"H. E. Sheshtawy, O. E. Moctar, T. Schellin, S. Natarajan\",\"doi\":\"10.1115/omae2019-95722\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n A tidal stream turbine was designed using one of the optimised hydrofoils, whose lift-to-drag ratio at an angle of attack of 5.2 degrees was 4.5% higher than that of the reference hydrofoil. The incompressible Reynolds-averaged Navier Stokes equations in steady state were solved using k-ω (SST) turbulence model for the reference and optimised tidal stream turbines. The discretisation errors and the effect of different y+ values on the solution were analysed. Thrust and power coefficients of the modelled reference turbine were validated against experimental measurements. Output power and thrust of the reference and the optimised tidal turbines were compared. For a tip speed ratio of 3.0, the output power of the optimised tidal turbine was 8.27% higher than that of the reference turbine of the same thrust.\",\"PeriodicalId\":306681,\"journal\":{\"name\":\"Volume 10: Ocean Renewable Energy\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 10: Ocean Renewable Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/omae2019-95722\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 10: Ocean Renewable Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/omae2019-95722","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Numerical Investigation of an Optimised Horizontal Axis Tidal Stream Turbine
A tidal stream turbine was designed using one of the optimised hydrofoils, whose lift-to-drag ratio at an angle of attack of 5.2 degrees was 4.5% higher than that of the reference hydrofoil. The incompressible Reynolds-averaged Navier Stokes equations in steady state were solved using k-ω (SST) turbulence model for the reference and optimised tidal stream turbines. The discretisation errors and the effect of different y+ values on the solution were analysed. Thrust and power coefficients of the modelled reference turbine were validated against experimental measurements. Output power and thrust of the reference and the optimised tidal turbines were compared. For a tip speed ratio of 3.0, the output power of the optimised tidal turbine was 8.27% higher than that of the reference turbine of the same thrust.