Bertha Aurellia Pamudya Fajar, Miswanto, Windarto
{"title":"Analisis Kestabilan dan Kontrol Optimum pada Model Penyebaran Penyakit Influenza dengan Adanya Populasi Cross-Immune","authors":"Bertha Aurellia Pamudya Fajar, Miswanto, Windarto","doi":"10.20473/conmatha.v4i2.39168","DOIUrl":null,"url":null,"abstract":"Influenza is a respiratory tract infection known as flu. Caused by an RNA virus from Orthomyxoviridae family. This thesis aims to analyze the stability of the equilibrium point in the mathematical model of influenza transmission with Cross-Immune population and applying optimal control variables in the form of prevention and treatment. In this mathematical model of influenza transmission with Cross-Immune population, we obtain two equilibriums namely, the non- endemic equilibrium and the endemic equilibrium. Local stability and the existence of endemic equilibrium depend on the basic reproduction number (R0). The spread of influenza does not occur in the population when R0 < 1 and the spread of influenza persist in the population when R0 > 1. Furthermore, the problem of control variables in the mathematical model of influenza transmission is determined through the Pontryagin Maximum Principle method. The numerical simulation results show that treatment efforts are more effective in suppressing the spread of influenza disease than prevention efforts. However, giving control variables in the form of prevention and treatment at the same time is very effective in minimizing the number of human populations expose to and infected with influenza.","PeriodicalId":119993,"journal":{"name":"Contemporary Mathematics and Applications (ConMathA)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Contemporary Mathematics and Applications (ConMathA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20473/conmatha.v4i2.39168","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

流感是一种被称为流感的呼吸道感染。由正黏液病毒科的RNA病毒引起。本文旨在分析具有交叉免疫人群的流感传播数学模型中平衡点的稳定性,并以预防和治疗的形式应用最优控制变量。在交叉免疫人群流感传播的数学模型中,我们得到了非地方病平衡和地方病平衡。局部稳定性和地方性平衡的存在取决于基本繁殖数(R0)。当R0 < 1时,流感在人群中不发生传播,当R0 > 1时,流感在人群中持续传播。在此基础上,利用庞特里亚金极大值原理确定了流感传播数学模型中的控制变量问题。数值模拟结果表明,治疗工作比预防工作更有效地抑制流感疾病的传播。然而,同时以预防和治疗的形式提供控制变量,对于尽量减少接触和感染流感的人口数量非常有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analisis Kestabilan dan Kontrol Optimum pada Model Penyebaran Penyakit Influenza dengan Adanya Populasi Cross-Immune
Influenza is a respiratory tract infection known as flu. Caused by an RNA virus from Orthomyxoviridae family. This thesis aims to analyze the stability of the equilibrium point in the mathematical model of influenza transmission with Cross-Immune population and applying optimal control variables in the form of prevention and treatment. In this mathematical model of influenza transmission with Cross-Immune population, we obtain two equilibriums namely, the non- endemic equilibrium and the endemic equilibrium. Local stability and the existence of endemic equilibrium depend on the basic reproduction number (R0). The spread of influenza does not occur in the population when R0 < 1 and the spread of influenza persist in the population when R0 > 1. Furthermore, the problem of control variables in the mathematical model of influenza transmission is determined through the Pontryagin Maximum Principle method. The numerical simulation results show that treatment efforts are more effective in suppressing the spread of influenza disease than prevention efforts. However, giving control variables in the form of prevention and treatment at the same time is very effective in minimizing the number of human populations expose to and infected with influenza.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信