Jayadev Acharya, Ashkan Jafarpour, A. Orlitsky, A. Suresh
{"title":"单调分布和m-模态分布的有效压缩","authors":"Jayadev Acharya, Ashkan Jafarpour, A. Orlitsky, A. Suresh","doi":"10.1109/ISIT.2014.6875157","DOIUrl":null,"url":null,"abstract":"We consider universal compression of n samples drawn independently according to a monotone or m-modal distribution over k elements. We show that for all these distributions, the per-sample redundancy diminishes to 0 if k = exp(o(n/log n)) and is at least a constant if k = exp(Ω(n)).","PeriodicalId":127191,"journal":{"name":"2014 IEEE International Symposium on Information Theory","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Efficient compression of monotone and m-modal distributions\",\"authors\":\"Jayadev Acharya, Ashkan Jafarpour, A. Orlitsky, A. Suresh\",\"doi\":\"10.1109/ISIT.2014.6875157\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider universal compression of n samples drawn independently according to a monotone or m-modal distribution over k elements. We show that for all these distributions, the per-sample redundancy diminishes to 0 if k = exp(o(n/log n)) and is at least a constant if k = exp(Ω(n)).\",\"PeriodicalId\":127191,\"journal\":{\"name\":\"2014 IEEE International Symposium on Information Theory\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Symposium on Information Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT.2014.6875157\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Symposium on Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2014.6875157","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Efficient compression of monotone and m-modal distributions
We consider universal compression of n samples drawn independently according to a monotone or m-modal distribution over k elements. We show that for all these distributions, the per-sample redundancy diminishes to 0 if k = exp(o(n/log n)) and is at least a constant if k = exp(Ω(n)).