单调分布和m-模态分布的有效压缩

Jayadev Acharya, Ashkan Jafarpour, A. Orlitsky, A. Suresh
{"title":"单调分布和m-模态分布的有效压缩","authors":"Jayadev Acharya, Ashkan Jafarpour, A. Orlitsky, A. Suresh","doi":"10.1109/ISIT.2014.6875157","DOIUrl":null,"url":null,"abstract":"We consider universal compression of n samples drawn independently according to a monotone or m-modal distribution over k elements. We show that for all these distributions, the per-sample redundancy diminishes to 0 if k = exp(o(n/log n)) and is at least a constant if k = exp(Ω(n)).","PeriodicalId":127191,"journal":{"name":"2014 IEEE International Symposium on Information Theory","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Efficient compression of monotone and m-modal distributions\",\"authors\":\"Jayadev Acharya, Ashkan Jafarpour, A. Orlitsky, A. Suresh\",\"doi\":\"10.1109/ISIT.2014.6875157\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider universal compression of n samples drawn independently according to a monotone or m-modal distribution over k elements. We show that for all these distributions, the per-sample redundancy diminishes to 0 if k = exp(o(n/log n)) and is at least a constant if k = exp(Ω(n)).\",\"PeriodicalId\":127191,\"journal\":{\"name\":\"2014 IEEE International Symposium on Information Theory\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Symposium on Information Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT.2014.6875157\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Symposium on Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2014.6875157","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

我们考虑根据k个元素的单调或m-模态分布独立绘制的n个样本的通用压缩。我们表明,对于所有这些分布,如果k = exp(o(n/log n)),则每个样本的冗余减小到0,如果k = exp(Ω(n)),则至少是一个常数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient compression of monotone and m-modal distributions
We consider universal compression of n samples drawn independently according to a monotone or m-modal distribution over k elements. We show that for all these distributions, the per-sample redundancy diminishes to 0 if k = exp(o(n/log n)) and is at least a constant if k = exp(Ω(n)).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信