Naïve基于低功耗蓝牙的室内定位贝叶斯分类器

Dzata Farahiyah, Rifky Mukti Romadhoni, Setyawan Wahyu Pratomo
{"title":"Naïve基于低功耗蓝牙的室内定位贝叶斯分类器","authors":"Dzata Farahiyah, Rifky Mukti Romadhoni, Setyawan Wahyu Pratomo","doi":"10.1145/3299819.3299842","DOIUrl":null,"url":null,"abstract":"Indoor localization becomes more popular along with the rapid growth of technology dan information system. The research has been conducted in many areas, especially in algorithm. Based on the need for knowledge of training data, Fingerprinting algorithm is categorized as the one that works with it. Training data is then computed with the machine learning approach, Naïve Bayes. Naïve Bayes is a simple and efficient classifier to estimate location. This study conducted an experiment with Naïve Bayes in order to classify unknown location of object based on the signal strength of Bluetooth low energy. It required 2 processes, collecting training data and evaluating test data. The result of the analysis with Naïve Bayes showed that the algorithm works well to estimate the right position of an object regarding its class.","PeriodicalId":119217,"journal":{"name":"Artificial Intelligence and Cloud Computing Conference","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Naïve Bayes Classifier for Indoor Positioning using Bluetooth Low Energy\",\"authors\":\"Dzata Farahiyah, Rifky Mukti Romadhoni, Setyawan Wahyu Pratomo\",\"doi\":\"10.1145/3299819.3299842\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Indoor localization becomes more popular along with the rapid growth of technology dan information system. The research has been conducted in many areas, especially in algorithm. Based on the need for knowledge of training data, Fingerprinting algorithm is categorized as the one that works with it. Training data is then computed with the machine learning approach, Naïve Bayes. Naïve Bayes is a simple and efficient classifier to estimate location. This study conducted an experiment with Naïve Bayes in order to classify unknown location of object based on the signal strength of Bluetooth low energy. It required 2 processes, collecting training data and evaluating test data. The result of the analysis with Naïve Bayes showed that the algorithm works well to estimate the right position of an object regarding its class.\",\"PeriodicalId\":119217,\"journal\":{\"name\":\"Artificial Intelligence and Cloud Computing Conference\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Intelligence and Cloud Computing Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3299819.3299842\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence and Cloud Computing Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3299819.3299842","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

随着技术和信息系统的快速发展,室内定位越来越受欢迎。这方面的研究已经在很多领域展开,尤其是在算法方面。基于对训练数据知识的需求,指纹识别算法被分类为与训练数据相关的算法。然后用机器学习方法(Naïve Bayes)计算训练数据。Naïve贝叶斯是一种简单有效的位置估计分类器。本研究利用Naïve Bayes进行实验,基于蓝牙低功耗信号强度对未知物体位置进行分类。它需要2个过程,收集培训数据和评估测试数据。通过Naïve Bayes的分析结果表明,该算法可以很好地估计对象在其类别中的正确位置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Naïve Bayes Classifier for Indoor Positioning using Bluetooth Low Energy
Indoor localization becomes more popular along with the rapid growth of technology dan information system. The research has been conducted in many areas, especially in algorithm. Based on the need for knowledge of training data, Fingerprinting algorithm is categorized as the one that works with it. Training data is then computed with the machine learning approach, Naïve Bayes. Naïve Bayes is a simple and efficient classifier to estimate location. This study conducted an experiment with Naïve Bayes in order to classify unknown location of object based on the signal strength of Bluetooth low energy. It required 2 processes, collecting training data and evaluating test data. The result of the analysis with Naïve Bayes showed that the algorithm works well to estimate the right position of an object regarding its class.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信