基于柔性的低频傅科摆设计

Patrick Fluckiger, I. Vardi, S. Henein
{"title":"基于柔性的低频傅科摆设计","authors":"Patrick Fluckiger, I. Vardi, S. Henein","doi":"10.1115/detc2020-22075","DOIUrl":null,"url":null,"abstract":"\n The Foucault pendulum is a well-known mechanism used to demonstrate the rotation of the Earth. It consists in a pendulum launched on linear orbits and, following Mach’s Principle, this line of oscillation will remain fixed with respect to absolute space but appear to slowly precess for a terrestrial observer due to the turning of the Earth. The theoretical proof of this phenomenon uses the fact that, to first approximation, the Foucault pendulum is a harmonic isotropic two degree of freedom (2-DOF) oscillator. Our interest in this mechanism follows from our research on flexure-based implementations of 2-DOF oscillators for their application as time bases for mechanical timekeeping.\n The concept of the Foucault pendulum therefore applies directly to 2-DOF flexure based harmonic oscillators. In the Foucault pendulum experiment, the rotation of the Earth is not the only source of precession. The unavoidable defects in the isotropy of the pendulum along with its well-known intrinsic isochronism defect induce additional precession which can easily mask the precession due to Earth rotation. These effects become more prominent as the frequency increases, that is, when the length of the pendulum decreases. For this reason, short Foucault pendulums are difficult to implement, museum Foucault pendulum are typically at least 7 meters long. These effects are also present in our flexure based oscillators and reducing these parasitic effects, requires decreasing their frequency.\n This paper discusses the design and dimensioning of a new flexure based 2-DOF oscillator which can reach low frequencies of the order of 0.1[Hz]. The motion of this oscillator is approximately planar, like the classical Foucault pendulum, and will have the same Foucault precession rate. The construction of a low frequency demonstrator is underway and will be followed by quantitative measurements which will examine both the Foucault effect as well as parasitic precession.","PeriodicalId":365283,"journal":{"name":"Volume 10: 44th Mechanisms and Robotics Conference (MR)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of a Flexure Based Low Frequency Foucault Pendulum\",\"authors\":\"Patrick Fluckiger, I. Vardi, S. Henein\",\"doi\":\"10.1115/detc2020-22075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The Foucault pendulum is a well-known mechanism used to demonstrate the rotation of the Earth. It consists in a pendulum launched on linear orbits and, following Mach’s Principle, this line of oscillation will remain fixed with respect to absolute space but appear to slowly precess for a terrestrial observer due to the turning of the Earth. The theoretical proof of this phenomenon uses the fact that, to first approximation, the Foucault pendulum is a harmonic isotropic two degree of freedom (2-DOF) oscillator. Our interest in this mechanism follows from our research on flexure-based implementations of 2-DOF oscillators for their application as time bases for mechanical timekeeping.\\n The concept of the Foucault pendulum therefore applies directly to 2-DOF flexure based harmonic oscillators. In the Foucault pendulum experiment, the rotation of the Earth is not the only source of precession. The unavoidable defects in the isotropy of the pendulum along with its well-known intrinsic isochronism defect induce additional precession which can easily mask the precession due to Earth rotation. These effects become more prominent as the frequency increases, that is, when the length of the pendulum decreases. For this reason, short Foucault pendulums are difficult to implement, museum Foucault pendulum are typically at least 7 meters long. These effects are also present in our flexure based oscillators and reducing these parasitic effects, requires decreasing their frequency.\\n This paper discusses the design and dimensioning of a new flexure based 2-DOF oscillator which can reach low frequencies of the order of 0.1[Hz]. The motion of this oscillator is approximately planar, like the classical Foucault pendulum, and will have the same Foucault precession rate. The construction of a low frequency demonstrator is underway and will be followed by quantitative measurements which will examine both the Foucault effect as well as parasitic precession.\",\"PeriodicalId\":365283,\"journal\":{\"name\":\"Volume 10: 44th Mechanisms and Robotics Conference (MR)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 10: 44th Mechanisms and Robotics Conference (MR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/detc2020-22075\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 10: 44th Mechanisms and Robotics Conference (MR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/detc2020-22075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

傅科摆是一个著名的用来证明地球自转的装置。它由一个在线性轨道上发射的钟摆组成,根据马赫原理,这条振荡线相对于绝对空间将保持固定,但由于地球的转动,对于地面观察者来说,它似乎是缓慢进动的。这种现象的理论证明使用了这样一个事实,即福柯摆是一个谐波各向同性的两自由度振荡器。我们对这种机制的兴趣源于我们对基于柔性的2-DOF振荡器的实现的研究,用于它们作为机械计时的时基。因此,傅科摆的概念直接适用于基于柔性的二自由度谐波振荡器。在福柯摆实验中,地球的自转并不是岁差的唯一来源。钟摆各向同性中不可避免的缺陷及其众所周知的固有等时性缺陷会引起额外的进动,这很容易掩盖由于地球自转而引起的进动。随着频率的增加,也就是说,当钟摆的长度减少时,这些影响变得更加突出。因此,短的福柯摆很难实现,博物馆的福柯摆通常至少有7米长。这些效应也存在于我们的基于柔性的振荡器中,减少这些寄生效应需要降低它们的频率。本文讨论了一种新型挠性二自由度振荡器的设计和尺寸,该振荡器可以达到0.1[Hz]数量级的低频。该振子的运动近似于平面,就像经典的福柯摆一样,并且具有相同的福柯进动率。低频演示器的建造正在进行中,随后将进行定量测量,以检查福柯效应和寄生进动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design of a Flexure Based Low Frequency Foucault Pendulum
The Foucault pendulum is a well-known mechanism used to demonstrate the rotation of the Earth. It consists in a pendulum launched on linear orbits and, following Mach’s Principle, this line of oscillation will remain fixed with respect to absolute space but appear to slowly precess for a terrestrial observer due to the turning of the Earth. The theoretical proof of this phenomenon uses the fact that, to first approximation, the Foucault pendulum is a harmonic isotropic two degree of freedom (2-DOF) oscillator. Our interest in this mechanism follows from our research on flexure-based implementations of 2-DOF oscillators for their application as time bases for mechanical timekeeping. The concept of the Foucault pendulum therefore applies directly to 2-DOF flexure based harmonic oscillators. In the Foucault pendulum experiment, the rotation of the Earth is not the only source of precession. The unavoidable defects in the isotropy of the pendulum along with its well-known intrinsic isochronism defect induce additional precession which can easily mask the precession due to Earth rotation. These effects become more prominent as the frequency increases, that is, when the length of the pendulum decreases. For this reason, short Foucault pendulums are difficult to implement, museum Foucault pendulum are typically at least 7 meters long. These effects are also present in our flexure based oscillators and reducing these parasitic effects, requires decreasing their frequency. This paper discusses the design and dimensioning of a new flexure based 2-DOF oscillator which can reach low frequencies of the order of 0.1[Hz]. The motion of this oscillator is approximately planar, like the classical Foucault pendulum, and will have the same Foucault precession rate. The construction of a low frequency demonstrator is underway and will be followed by quantitative measurements which will examine both the Foucault effect as well as parasitic precession.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信