Ilieff猜想极值多项式的一些性质

D. Phelps, R. S. Rodriguez
{"title":"Ilieff猜想极值多项式的一些性质","authors":"D. Phelps, R. S. Rodriguez","doi":"10.2996/KMJ/1138846519","DOIUrl":null,"url":null,"abstract":"Let Pn denote the family of complex polynomials each of degree n, with leading coefficient 1, and having all of its roots in J9(0,1), the closed unit disc with center at 0 and radius 1. Let p€Pn have roots zly •••, zn and have roots wu •••, wn-ι. For such p we use I(zj), I(p), and I(Pn) to denote the numbers min {|z$—wk\\: l^k^n—l},m3x{I(Zj):l^j^n}, and sup {/(/>): psPn} respectively. Then p€Pn is called an extremal polynomial for the Ilieff conjecture if I(p)=I(Pn). With this notation the Gauss-Lucas theorem implies that I(Pn)^2 and the conjecture of Ilieff is that I(p)^l for all psPnWe show that there exist extremal polynomials, that an extremal 'polynomial must have at least one root on each subarc of the unit circle of length i^π, and we find the extremal polynomials for n—Z and 4. We begin with a","PeriodicalId":318148,"journal":{"name":"Kodai Mathematical Seminar Reports","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"Some properties of extremal polynomials for the Ilieff conjecture\",\"authors\":\"D. Phelps, R. S. Rodriguez\",\"doi\":\"10.2996/KMJ/1138846519\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let Pn denote the family of complex polynomials each of degree n, with leading coefficient 1, and having all of its roots in J9(0,1), the closed unit disc with center at 0 and radius 1. Let p€Pn have roots zly •••, zn and have roots wu •••, wn-ι. For such p we use I(zj), I(p), and I(Pn) to denote the numbers min {|z$—wk\\\\: l^k^n—l},m3x{I(Zj):l^j^n}, and sup {/(/>): psPn} respectively. Then p€Pn is called an extremal polynomial for the Ilieff conjecture if I(p)=I(Pn). With this notation the Gauss-Lucas theorem implies that I(Pn)^2 and the conjecture of Ilieff is that I(p)^l for all psPnWe show that there exist extremal polynomials, that an extremal 'polynomial must have at least one root on each subarc of the unit circle of length i^π, and we find the extremal polynomials for n—Z and 4. We begin with a\",\"PeriodicalId\":318148,\"journal\":{\"name\":\"Kodai Mathematical Seminar Reports\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kodai Mathematical Seminar Reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2996/KMJ/1138846519\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kodai Mathematical Seminar Reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2996/KMJ/1138846519","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

摘要

设Pn表示n次复数多项式族,其前导系数为1,其所有根都在J9(0,1)中,J9是中心为0,半径为1的封闭单位圆盘。设p€Pn有根zly•••,zn和根wu••,wn- i。对于这样的p,我们使用I(zj), I(p)和I(Pn)分别表示min {|z$ -wk \: l^k^n - l},m3x{I(zj):l^j^n}和sup {/(/>): psPn}。如果I(p)=I(Pn),则p€Pn称为Ilieff猜想的极值多项式。利用这种符号,高斯-卢卡斯定理表明I(Pn)^2和Ilieff猜想对于所有pspni (p)^l,我们证明了存在极值多项式,极值多项式必须在长度为I ^π的单位圆的每个子弧上至少有一个根,并且我们找到了n-Z和4的极值多项式。我们从a开始
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Some properties of extremal polynomials for the Ilieff conjecture
Let Pn denote the family of complex polynomials each of degree n, with leading coefficient 1, and having all of its roots in J9(0,1), the closed unit disc with center at 0 and radius 1. Let p€Pn have roots zly •••, zn and have roots wu •••, wn-ι. For such p we use I(zj), I(p), and I(Pn) to denote the numbers min {|z$—wk\: l^k^n—l},m3x{I(Zj):l^j^n}, and sup {/(/>): psPn} respectively. Then p€Pn is called an extremal polynomial for the Ilieff conjecture if I(p)=I(Pn). With this notation the Gauss-Lucas theorem implies that I(Pn)^2 and the conjecture of Ilieff is that I(p)^l for all psPnWe show that there exist extremal polynomials, that an extremal 'polynomial must have at least one root on each subarc of the unit circle of length i^π, and we find the extremal polynomials for n—Z and 4. We begin with a
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信