基于学习的IGMRF先验密集立体匹配方法

S. Nahar, M. Joshi
{"title":"基于学习的IGMRF先验密集立体匹配方法","authors":"S. Nahar, M. Joshi","doi":"10.1109/NCVPRIPG.2013.6776264","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a learning based approach for solving the problem of dense stereo matching problem using edge preserving regularization prior. Given the test stereo pair and a training database consisting of disparity maps estimated using multiple views stereo images and their corresponding ground truths, we obtain the disparity map for the test set. We first obtain an initial disparity estimate by learning the disparities from the available database. A new learning based approach is proposed for obtaining the initial estimate that uses the estimated and the true disparities. Since the disparity estimation is an ill posed problem, we obtain the final disparity map using a regularization framework. The prior model for the disparity map is chosen as an Inhomogeneous Gaussian Markov Random Field (IGMRF). Assuming that the spatial variations among the disparity values captured in an initial estimate correspond to the variations in true disparities, we obtain the IGMRF parameters at every pixel location using the initial estimate. A graph cuts based method is used to optimize the energy function in order to obtain the global minimum. Experimental results on the standard dataset demonstrate the effectiveness of the proposed approach.","PeriodicalId":436402,"journal":{"name":"2013 Fourth National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A learning based approach for dense stereo matching with IGMRF prior\",\"authors\":\"S. Nahar, M. Joshi\",\"doi\":\"10.1109/NCVPRIPG.2013.6776264\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a learning based approach for solving the problem of dense stereo matching problem using edge preserving regularization prior. Given the test stereo pair and a training database consisting of disparity maps estimated using multiple views stereo images and their corresponding ground truths, we obtain the disparity map for the test set. We first obtain an initial disparity estimate by learning the disparities from the available database. A new learning based approach is proposed for obtaining the initial estimate that uses the estimated and the true disparities. Since the disparity estimation is an ill posed problem, we obtain the final disparity map using a regularization framework. The prior model for the disparity map is chosen as an Inhomogeneous Gaussian Markov Random Field (IGMRF). Assuming that the spatial variations among the disparity values captured in an initial estimate correspond to the variations in true disparities, we obtain the IGMRF parameters at every pixel location using the initial estimate. A graph cuts based method is used to optimize the energy function in order to obtain the global minimum. Experimental results on the standard dataset demonstrate the effectiveness of the proposed approach.\",\"PeriodicalId\":436402,\"journal\":{\"name\":\"2013 Fourth National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 Fourth National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NCVPRIPG.2013.6776264\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Fourth National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NCVPRIPG.2013.6776264","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种基于学习的方法,利用边缘保持正则化先验来解决密集立体匹配问题。给定测试立体对和由多视图立体图像及其相应的地面真值估计的视差图组成的训练数据库,我们获得测试集的视差图。我们首先通过从现有数据库中学习差异来获得初始的差异估计。提出了一种新的基于学习的方法,利用估计值和真实差值获得初始估计。由于视差估计是一个病态问题,我们使用正则化框架得到最终的视差映射。视差图的先验模型选择为非齐次高斯马尔可夫随机场(IGMRF)。假设在初始估计中捕获的视差值之间的空间变化对应于真实视差的变化,我们使用初始估计获得每个像素位置的IGMRF参数。采用基于图割的方法对能量函数进行优化,以获得全局最小值。在标准数据集上的实验结果证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A learning based approach for dense stereo matching with IGMRF prior
In this paper, we propose a learning based approach for solving the problem of dense stereo matching problem using edge preserving regularization prior. Given the test stereo pair and a training database consisting of disparity maps estimated using multiple views stereo images and their corresponding ground truths, we obtain the disparity map for the test set. We first obtain an initial disparity estimate by learning the disparities from the available database. A new learning based approach is proposed for obtaining the initial estimate that uses the estimated and the true disparities. Since the disparity estimation is an ill posed problem, we obtain the final disparity map using a regularization framework. The prior model for the disparity map is chosen as an Inhomogeneous Gaussian Markov Random Field (IGMRF). Assuming that the spatial variations among the disparity values captured in an initial estimate correspond to the variations in true disparities, we obtain the IGMRF parameters at every pixel location using the initial estimate. A graph cuts based method is used to optimize the energy function in order to obtain the global minimum. Experimental results on the standard dataset demonstrate the effectiveness of the proposed approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信