图像识别算法在菲律宾石灰病检测中的应用

Mikho J Pelingon, Valenzuela Franco Carlos, M. L. Guico, J. K. Galicia
{"title":"图像识别算法在菲律宾石灰病检测中的应用","authors":"Mikho J Pelingon, Valenzuela Franco Carlos, M. L. Guico, J. K. Galicia","doi":"10.1109/IAICT59002.2023.10205595","DOIUrl":null,"url":null,"abstract":"Calamansi has been declared as one of the most important fruit growing crops in the Philippines. However, due to certain bacteria, it is susceptible to certain diseases affecting its harvest rate. This paper aims to effectively monitor the state of the calamansi at its healthy state and at its diseased state. Specifically, it classifies diseases such as Citrus Canker, Citrus Scab, and Citrus Browning by utilizing existing image processing techniques for disease detection of different fruits and determining which algorithm is most apt for this application in terms of precision, accuracy and recall. Techniques such as K-Means Clustering, utilization of an Artificial Neural Network (ANN), feature extraction through GLCM along with the usage of a minimum distance classifier, a Support Vector Machine (SVM) classifier and other techniques and/or their combinations were explored and measured. The researchers performed two kinds of tests: 1×1 comparison and merged comparison. For the 1×1 comparison, making use of GrabCut, color feature extraction, and SVM produced the best overall results, with an overall average of 98% for precision, 95% for accuracy, 91% for recall, and 94% for F-score. Adaptive Gaussian Filtering along with texture feature extraction and SVM was the most accurate for detecting calamansi fruits with citrus canker and citrus scab. Overall, the two methods acquired the same average accuracy of 61%","PeriodicalId":339796,"journal":{"name":"2023 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of Image Recognition Algorithms in the Detection of Philippine Lime Diseases\",\"authors\":\"Mikho J Pelingon, Valenzuela Franco Carlos, M. L. Guico, J. K. Galicia\",\"doi\":\"10.1109/IAICT59002.2023.10205595\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Calamansi has been declared as one of the most important fruit growing crops in the Philippines. However, due to certain bacteria, it is susceptible to certain diseases affecting its harvest rate. This paper aims to effectively monitor the state of the calamansi at its healthy state and at its diseased state. Specifically, it classifies diseases such as Citrus Canker, Citrus Scab, and Citrus Browning by utilizing existing image processing techniques for disease detection of different fruits and determining which algorithm is most apt for this application in terms of precision, accuracy and recall. Techniques such as K-Means Clustering, utilization of an Artificial Neural Network (ANN), feature extraction through GLCM along with the usage of a minimum distance classifier, a Support Vector Machine (SVM) classifier and other techniques and/or their combinations were explored and measured. The researchers performed two kinds of tests: 1×1 comparison and merged comparison. For the 1×1 comparison, making use of GrabCut, color feature extraction, and SVM produced the best overall results, with an overall average of 98% for precision, 95% for accuracy, 91% for recall, and 94% for F-score. Adaptive Gaussian Filtering along with texture feature extraction and SVM was the most accurate for detecting calamansi fruits with citrus canker and citrus scab. Overall, the two methods acquired the same average accuracy of 61%\",\"PeriodicalId\":339796,\"journal\":{\"name\":\"2023 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IAICT59002.2023.10205595\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAICT59002.2023.10205595","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

菖蒲已被宣布为菲律宾最重要的水果种植作物之一。然而,由于某些细菌的存在,它容易受到某些疾病的影响,从而影响其采收率。本文旨在对菖蒲的健康状态和病害状态进行有效监测。具体来说,它利用现有的图像处理技术对不同水果进行疾病检测,并确定哪种算法在精度、准确度和召回率方面最适合于这种应用,从而对柑橘溃疡病、柑橘痂病和柑橘褐变等疾病进行分类。对K-Means聚类、利用人工神经网络(ANN)、通过GLCM进行特征提取以及使用最小距离分类器、支持向量机(SVM)分类器等技术和/或它们的组合进行了探索和测量。研究人员进行了两种测试:1×1比较和合并比较。对于1×1的比较,使用GrabCut,颜色特征提取和SVM产生了最好的总体结果,总体平均精度为98%,准确度为95%,召回率为91%,f分数为94%。自适应高斯滤波结合纹理特征提取和支持向量机对带有柑橘溃疡病和柑橘痂的菖蒲果进行检测的准确率最高。总体而言,两种方法的平均准确度相同,均为61%
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of Image Recognition Algorithms in the Detection of Philippine Lime Diseases
Calamansi has been declared as one of the most important fruit growing crops in the Philippines. However, due to certain bacteria, it is susceptible to certain diseases affecting its harvest rate. This paper aims to effectively monitor the state of the calamansi at its healthy state and at its diseased state. Specifically, it classifies diseases such as Citrus Canker, Citrus Scab, and Citrus Browning by utilizing existing image processing techniques for disease detection of different fruits and determining which algorithm is most apt for this application in terms of precision, accuracy and recall. Techniques such as K-Means Clustering, utilization of an Artificial Neural Network (ANN), feature extraction through GLCM along with the usage of a minimum distance classifier, a Support Vector Machine (SVM) classifier and other techniques and/or their combinations were explored and measured. The researchers performed two kinds of tests: 1×1 comparison and merged comparison. For the 1×1 comparison, making use of GrabCut, color feature extraction, and SVM produced the best overall results, with an overall average of 98% for precision, 95% for accuracy, 91% for recall, and 94% for F-score. Adaptive Gaussian Filtering along with texture feature extraction and SVM was the most accurate for detecting calamansi fruits with citrus canker and citrus scab. Overall, the two methods acquired the same average accuracy of 61%
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信