{"title":"自适应DPE算法的忆阻器仿真器:比较研究","authors":"Hussein Assaf, Y. Savaria, M. Sawan","doi":"10.1109/AICAS.2019.8771594","DOIUrl":null,"url":null,"abstract":"Vector Matrix Multiplication (VMM) is a complex operation requiring large computational power to fulfill one iteration. Resistive computing; including memristors, is one solution to speed up VMM by optimizing the multiplication process into few steps despite the matrices’ sizes. In this paper, we propose an Adaptive Dot Product Engine (ADPE) algorithm based on memristors for enhancing the process of resistive computing in VMM. The algorithm showed 5% error on preliminary results with one on-line training step for one layered crossbar array circuit of memristors. However memristors require new fabrication technologies where the design and validation processes of systems using these devices remains challenging. A comparison of various available circuits emulating a memristor suitable for ADPE is presented and models were compared based on chip size, circuit elements used and operating frequency.","PeriodicalId":273095,"journal":{"name":"2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Memristor Emulators for an Adaptive DPE Algorithm: Comparative Study\",\"authors\":\"Hussein Assaf, Y. Savaria, M. Sawan\",\"doi\":\"10.1109/AICAS.2019.8771594\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Vector Matrix Multiplication (VMM) is a complex operation requiring large computational power to fulfill one iteration. Resistive computing; including memristors, is one solution to speed up VMM by optimizing the multiplication process into few steps despite the matrices’ sizes. In this paper, we propose an Adaptive Dot Product Engine (ADPE) algorithm based on memristors for enhancing the process of resistive computing in VMM. The algorithm showed 5% error on preliminary results with one on-line training step for one layered crossbar array circuit of memristors. However memristors require new fabrication technologies where the design and validation processes of systems using these devices remains challenging. A comparison of various available circuits emulating a memristor suitable for ADPE is presented and models were compared based on chip size, circuit elements used and operating frequency.\",\"PeriodicalId\":273095,\"journal\":{\"name\":\"2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AICAS.2019.8771594\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AICAS.2019.8771594","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Memristor Emulators for an Adaptive DPE Algorithm: Comparative Study
Vector Matrix Multiplication (VMM) is a complex operation requiring large computational power to fulfill one iteration. Resistive computing; including memristors, is one solution to speed up VMM by optimizing the multiplication process into few steps despite the matrices’ sizes. In this paper, we propose an Adaptive Dot Product Engine (ADPE) algorithm based on memristors for enhancing the process of resistive computing in VMM. The algorithm showed 5% error on preliminary results with one on-line training step for one layered crossbar array circuit of memristors. However memristors require new fabrication technologies where the design and validation processes of systems using these devices remains challenging. A comparison of various available circuits emulating a memristor suitable for ADPE is presented and models were compared based on chip size, circuit elements used and operating frequency.