时不变LDPC卷积码的循环分析

Hua Zhou, N. Goertz
{"title":"时不变LDPC卷积码的循环分析","authors":"Hua Zhou, N. Goertz","doi":"10.1109/ICTEL.2010.5478744","DOIUrl":null,"url":null,"abstract":"Time-invariant low-density parity-check convolutional codes (LDPCccs) can be constructed from a polynomial form of a parity-check matrix that defines quasi-cyclic LDPC block codes based on circulant matrices. Based on this polynomial matrix, we discuss the relationships between the polynomial domain and the time domain parity-check and syndrome former matrices with respect to cycle properties. We present a novel, simple way to describe cycles in the polynomial version of the syndrome former matrix and we exploit this concept in a new cycle counting algorithm.","PeriodicalId":208094,"journal":{"name":"2010 17th International Conference on Telecommunications","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Cycle analysis of time-invariant LDPC convolutional codes\",\"authors\":\"Hua Zhou, N. Goertz\",\"doi\":\"10.1109/ICTEL.2010.5478744\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Time-invariant low-density parity-check convolutional codes (LDPCccs) can be constructed from a polynomial form of a parity-check matrix that defines quasi-cyclic LDPC block codes based on circulant matrices. Based on this polynomial matrix, we discuss the relationships between the polynomial domain and the time domain parity-check and syndrome former matrices with respect to cycle properties. We present a novel, simple way to describe cycles in the polynomial version of the syndrome former matrix and we exploit this concept in a new cycle counting algorithm.\",\"PeriodicalId\":208094,\"journal\":{\"name\":\"2010 17th International Conference on Telecommunications\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 17th International Conference on Telecommunications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICTEL.2010.5478744\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 17th International Conference on Telecommunications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTEL.2010.5478744","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

基于循环矩阵定义准循环LDPC分组码的校验矩阵的多项式形式可以构造定常低密度校验卷积码(ldpccs)。在此多项式矩阵的基础上,讨论了多项式域与时域奇偶校验和证原矩阵在循环性质上的关系。我们提出了一种新的、简单的方法来描述在多项式形式的综合征前矩阵中的循环,并将这一概念应用到一个新的循环计数算法中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cycle analysis of time-invariant LDPC convolutional codes
Time-invariant low-density parity-check convolutional codes (LDPCccs) can be constructed from a polynomial form of a parity-check matrix that defines quasi-cyclic LDPC block codes based on circulant matrices. Based on this polynomial matrix, we discuss the relationships between the polynomial domain and the time domain parity-check and syndrome former matrices with respect to cycle properties. We present a novel, simple way to describe cycles in the polynomial version of the syndrome former matrix and we exploit this concept in a new cycle counting algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信