基于增量数据集的有序模糊规则生成

K. Rudnik, A. Chwastyk, I. Pisz, G. Bocewicz
{"title":"基于增量数据集的有序模糊规则生成","authors":"K. Rudnik, A. Chwastyk, I. Pisz, G. Bocewicz","doi":"10.1109/FUZZ45933.2021.9494455","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel approach for building transparent knowledge-based systems by generating interpretable fuzzy rules that allow for present dependences between quantitative variables by accounting for uncertainty and the dynamics of their values. In the approach, IF-THEN rules are used to show the conditional relationship between the ordered fuzzy numbers, which contain additional information about the tendencies of variables' value changes. This paper elaborates an approach of mining ordered fuzzy rules from numerical data included in an incremental database. This approach develops the ability to record uncertainty and its change in the context of rapidly changing data. In addition, it is the basis for the development of research on the inference method with ordered fuzzy rules, which may become an indispensable tool for decision-making in an uncertain environment.","PeriodicalId":151289,"journal":{"name":"2021 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Ordered fuzzy rules generation based on incremental dataset\",\"authors\":\"K. Rudnik, A. Chwastyk, I. Pisz, G. Bocewicz\",\"doi\":\"10.1109/FUZZ45933.2021.9494455\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a novel approach for building transparent knowledge-based systems by generating interpretable fuzzy rules that allow for present dependences between quantitative variables by accounting for uncertainty and the dynamics of their values. In the approach, IF-THEN rules are used to show the conditional relationship between the ordered fuzzy numbers, which contain additional information about the tendencies of variables' value changes. This paper elaborates an approach of mining ordered fuzzy rules from numerical data included in an incremental database. This approach develops the ability to record uncertainty and its change in the context of rapidly changing data. In addition, it is the basis for the development of research on the inference method with ordered fuzzy rules, which may become an indispensable tool for decision-making in an uncertain environment.\",\"PeriodicalId\":151289,\"journal\":{\"name\":\"2021 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FUZZ45933.2021.9494455\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZ45933.2021.9494455","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种新的方法,通过生成可解释的模糊规则来构建透明的基于知识的系统,这些规则通过考虑不确定性和它们的值的动态来允许定量变量之间的当前依赖关系。在该方法中,使用IF-THEN规则来表示有序模糊数之间的条件关系,其中包含有关变量值变化趋势的附加信息。本文阐述了一种从增量数据库中的数值数据中挖掘有序模糊规则的方法。这种方法发展了在快速变化的数据背景下记录不确定性及其变化的能力。此外,它也是有序模糊规则推理方法研究发展的基础,可能成为不确定环境下决策不可缺少的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ordered fuzzy rules generation based on incremental dataset
This paper proposes a novel approach for building transparent knowledge-based systems by generating interpretable fuzzy rules that allow for present dependences between quantitative variables by accounting for uncertainty and the dynamics of their values. In the approach, IF-THEN rules are used to show the conditional relationship between the ordered fuzzy numbers, which contain additional information about the tendencies of variables' value changes. This paper elaborates an approach of mining ordered fuzzy rules from numerical data included in an incremental database. This approach develops the ability to record uncertainty and its change in the context of rapidly changing data. In addition, it is the basis for the development of research on the inference method with ordered fuzzy rules, which may become an indispensable tool for decision-making in an uncertain environment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信