应对COVID-19的行为和政策:来自谷歌国家级居家令流动性数据的证据

William J. Luther
{"title":"应对COVID-19的行为和政策:来自谷歌国家级居家令流动性数据的证据","authors":"William J. Luther","doi":"10.2139/ssrn.3596551","DOIUrl":null,"url":null,"abstract":"In early 2020, many states issued stay-at-home orders to slow the spread of COVID-19. I analyze Google Mobility data to consider the extent to which state-level stay-at-home orders induced people to stay at home. I find that much of the change in residential, retail and recreational, park, workplace, transit station, and, to a lesser extent, grocery and pharmacy activity preceded state-level stay-at- home orders.","PeriodicalId":119641,"journal":{"name":"HEN: Public Health (Topic)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Behavioral and Policy Responses to COVID-19: Evidence from Google Mobility Data on State-Level Stay-at-Home Orders\",\"authors\":\"William J. Luther\",\"doi\":\"10.2139/ssrn.3596551\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In early 2020, many states issued stay-at-home orders to slow the spread of COVID-19. I analyze Google Mobility data to consider the extent to which state-level stay-at-home orders induced people to stay at home. I find that much of the change in residential, retail and recreational, park, workplace, transit station, and, to a lesser extent, grocery and pharmacy activity preceded state-level stay-at- home orders.\",\"PeriodicalId\":119641,\"journal\":{\"name\":\"HEN: Public Health (Topic)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"HEN: Public Health (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3596551\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"HEN: Public Health (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3596551","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

2020年初,许多州发布了居家令,以减缓COVID-19的传播。我分析谷歌流动性数据,以考虑州级居家令在多大程度上促使人们呆在家里。我发现,住宅、零售和娱乐、公园、工作场所、中转站以及(在较小程度上)杂货店和药房活动的大部分变化都先于国家级的“居家令”。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Behavioral and Policy Responses to COVID-19: Evidence from Google Mobility Data on State-Level Stay-at-Home Orders
In early 2020, many states issued stay-at-home orders to slow the spread of COVID-19. I analyze Google Mobility data to consider the extent to which state-level stay-at-home orders induced people to stay at home. I find that much of the change in residential, retail and recreational, park, workplace, transit station, and, to a lesser extent, grocery and pharmacy activity preceded state-level stay-at- home orders.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信