{"title":"软件模型检查中的内存高效状态空间分析","authors":"A. Mukherjee, Z. Tari, P. Bertók","doi":"10.1002/9781118720103.CH6","DOIUrl":null,"url":null,"abstract":"Formal methods have an unprecedented ability to endorse the correctness of a system. In spite of that, it has been limited to safety-critical and mission-critical systems owing to significant time and memory costs involved. Lately, our ever increasing dependency on software in all walks of our life has necessitated using formal methods for a wider range of softwares. In this paper, we propose an algorithm to make this possible by reducing the memory requirement for model checking, a widely used formal method. A modelchecker stores all explored states in memory to ensure termination. The proposed algorithm slash memory costs by storing these states in compressed form. In compressed form, a state is stored as how different it is from its previous state. Our experiments report a memory reduction of 95% with only doubling of computation delay. Aforesaid reduction allows model checking in a machine with only a fraction of memory needed otherwise. Consequently the advantage is twofold, 1) enormous savings as only a small physical memory is required and 2) as more states can now be stored in a memory of same size, the chances of complete state-space analysis is exceedingly high.","PeriodicalId":136130,"journal":{"name":"Australasian Computer Science Conference","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Memory efficient state-space analysis in software model-checking\",\"authors\":\"A. Mukherjee, Z. Tari, P. Bertók\",\"doi\":\"10.1002/9781118720103.CH6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Formal methods have an unprecedented ability to endorse the correctness of a system. In spite of that, it has been limited to safety-critical and mission-critical systems owing to significant time and memory costs involved. Lately, our ever increasing dependency on software in all walks of our life has necessitated using formal methods for a wider range of softwares. In this paper, we propose an algorithm to make this possible by reducing the memory requirement for model checking, a widely used formal method. A modelchecker stores all explored states in memory to ensure termination. The proposed algorithm slash memory costs by storing these states in compressed form. In compressed form, a state is stored as how different it is from its previous state. Our experiments report a memory reduction of 95% with only doubling of computation delay. Aforesaid reduction allows model checking in a machine with only a fraction of memory needed otherwise. Consequently the advantage is twofold, 1) enormous savings as only a small physical memory is required and 2) as more states can now be stored in a memory of same size, the chances of complete state-space analysis is exceedingly high.\",\"PeriodicalId\":136130,\"journal\":{\"name\":\"Australasian Computer Science Conference\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Australasian Computer Science Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/9781118720103.CH6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Australasian Computer Science Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/9781118720103.CH6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Memory efficient state-space analysis in software model-checking
Formal methods have an unprecedented ability to endorse the correctness of a system. In spite of that, it has been limited to safety-critical and mission-critical systems owing to significant time and memory costs involved. Lately, our ever increasing dependency on software in all walks of our life has necessitated using formal methods for a wider range of softwares. In this paper, we propose an algorithm to make this possible by reducing the memory requirement for model checking, a widely used formal method. A modelchecker stores all explored states in memory to ensure termination. The proposed algorithm slash memory costs by storing these states in compressed form. In compressed form, a state is stored as how different it is from its previous state. Our experiments report a memory reduction of 95% with only doubling of computation delay. Aforesaid reduction allows model checking in a machine with only a fraction of memory needed otherwise. Consequently the advantage is twofold, 1) enormous savings as only a small physical memory is required and 2) as more states can now be stored in a memory of same size, the chances of complete state-space analysis is exceedingly high.