基于解剖网格的几何深度学习预测阿尔茨海默病

Ignacio Sarasua, Jonwong Lee, C. Wachinger
{"title":"基于解剖网格的几何深度学习预测阿尔茨海默病","authors":"Ignacio Sarasua, Jonwong Lee, C. Wachinger","doi":"10.1109/ISBI48211.2021.9433948","DOIUrl":null,"url":null,"abstract":"Geometric deep learning can find representations that are optimal for a given task and therefore improve the performance over pre-defined representations. While current work has mainly focused on point representations, meshes also contain connectivity information and are therefore a more comprehensive characterization of the underlying anatomical surface. In this work, we evaluate four recent geometric deep learning approaches that operate on mesh representations. These approaches can be grouped into template-free and template-based approaches, where the template-based methods need a more elaborate pre-processing step with the definition of a common reference template and correspondences. We compare the different networks for the prediction of Alzheimer’s disease based on the meshes of the hippocampus. Our results show advantages for template-based methods in terms of accuracy, number of learnable parameters, and training speed. While the template creation may be limiting for some applications, neuroimaging has a long history of building templates with automated tools readily available. Overall, working with meshes is more involved than working with simplistic point clouds, but they also offer new avenues for designing geometric deep learning architectures.","PeriodicalId":372939,"journal":{"name":"2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Geometric Deep Learning on Anatomical Meshes for the Prediction of Alzheimer’s Disease\",\"authors\":\"Ignacio Sarasua, Jonwong Lee, C. Wachinger\",\"doi\":\"10.1109/ISBI48211.2021.9433948\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Geometric deep learning can find representations that are optimal for a given task and therefore improve the performance over pre-defined representations. While current work has mainly focused on point representations, meshes also contain connectivity information and are therefore a more comprehensive characterization of the underlying anatomical surface. In this work, we evaluate four recent geometric deep learning approaches that operate on mesh representations. These approaches can be grouped into template-free and template-based approaches, where the template-based methods need a more elaborate pre-processing step with the definition of a common reference template and correspondences. We compare the different networks for the prediction of Alzheimer’s disease based on the meshes of the hippocampus. Our results show advantages for template-based methods in terms of accuracy, number of learnable parameters, and training speed. While the template creation may be limiting for some applications, neuroimaging has a long history of building templates with automated tools readily available. Overall, working with meshes is more involved than working with simplistic point clouds, but they also offer new avenues for designing geometric deep learning architectures.\",\"PeriodicalId\":372939,\"journal\":{\"name\":\"2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBI48211.2021.9433948\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI48211.2021.9433948","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

几何深度学习可以找到对给定任务最优的表示,从而比预定义的表示提高性能。虽然目前的工作主要集中在点表示上,但网格也包含连接信息,因此是对底层解剖表面的更全面的表征。在这项工作中,我们评估了最近在网格表示上操作的四种几何深度学习方法。这些方法可以分为无模板方法和基于模板的方法,其中基于模板的方法需要更精细的预处理步骤,并定义公共引用模板和通信。我们比较了基于海马体网预测阿尔茨海默病的不同网络。我们的结果显示了基于模板的方法在准确性、可学习参数的数量和训练速度方面的优势。虽然模板的创建可能对某些应用程序有限制,但神经成像在使用现成的自动化工具构建模板方面有着悠久的历史。总的来说,使用网格比使用简单的点云更复杂,但它们也为设计几何深度学习架构提供了新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Geometric Deep Learning on Anatomical Meshes for the Prediction of Alzheimer’s Disease
Geometric deep learning can find representations that are optimal for a given task and therefore improve the performance over pre-defined representations. While current work has mainly focused on point representations, meshes also contain connectivity information and are therefore a more comprehensive characterization of the underlying anatomical surface. In this work, we evaluate four recent geometric deep learning approaches that operate on mesh representations. These approaches can be grouped into template-free and template-based approaches, where the template-based methods need a more elaborate pre-processing step with the definition of a common reference template and correspondences. We compare the different networks for the prediction of Alzheimer’s disease based on the meshes of the hippocampus. Our results show advantages for template-based methods in terms of accuracy, number of learnable parameters, and training speed. While the template creation may be limiting for some applications, neuroimaging has a long history of building templates with automated tools readily available. Overall, working with meshes is more involved than working with simplistic point clouds, but they also offer new avenues for designing geometric deep learning architectures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信