Jiping Liu, Rongfu Lin, Shenghua Xu, Yong Wang, Xianghong Che, Jie Chen
{"title":"基于优化支持向量机的滑坡易感性评价","authors":"Jiping Liu, Rongfu Lin, Shenghua Xu, Yong Wang, Xianghong Che, Jie Chen","doi":"10.5194/ica-proc-4-67-2021","DOIUrl":null,"url":null,"abstract":"Abstract. Landslide is a natural disaster that has caused great property losses and human casualties in the world. To strengthen the target prevention and management level, ZhaShui county, Shaanxi province, is selected as the research area to evaluate the landslide susceptibility. First of all, under the premise of considering the correlation, 10 evaluation factors closely related to landslide disaster (i.e., elevation, rainfall, rock group, slope, slope aspect, vegetation index, landform, distance to residential area, distance to road, distance to river system) are taken together with non-landslide points, which are selected under multi-constraint conditions to form a sample data-set. Secondly, the sample dataset is substituted into the Support Vector Machine (SVM) model optimized by firefly algorithm for training and prediction. Finally, the result map was partitioned according to the natural discontinuous point method, and the landslide susceptibility map was obtained. The results show that the model optimized by the firefly algorithm has higher accuracy, and the landslide susceptibility results are more consistent with the actual distribution of disaster points.\n","PeriodicalId":233935,"journal":{"name":"Proceedings of the ICA","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Landslide susceptibility evaluation based on optimized support vector machine\",\"authors\":\"Jiping Liu, Rongfu Lin, Shenghua Xu, Yong Wang, Xianghong Che, Jie Chen\",\"doi\":\"10.5194/ica-proc-4-67-2021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. Landslide is a natural disaster that has caused great property losses and human casualties in the world. To strengthen the target prevention and management level, ZhaShui county, Shaanxi province, is selected as the research area to evaluate the landslide susceptibility. First of all, under the premise of considering the correlation, 10 evaluation factors closely related to landslide disaster (i.e., elevation, rainfall, rock group, slope, slope aspect, vegetation index, landform, distance to residential area, distance to road, distance to river system) are taken together with non-landslide points, which are selected under multi-constraint conditions to form a sample data-set. Secondly, the sample dataset is substituted into the Support Vector Machine (SVM) model optimized by firefly algorithm for training and prediction. Finally, the result map was partitioned according to the natural discontinuous point method, and the landslide susceptibility map was obtained. The results show that the model optimized by the firefly algorithm has higher accuracy, and the landslide susceptibility results are more consistent with the actual distribution of disaster points.\\n\",\"PeriodicalId\":233935,\"journal\":{\"name\":\"Proceedings of the ICA\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ICA\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5194/ica-proc-4-67-2021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ICA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/ica-proc-4-67-2021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Landslide susceptibility evaluation based on optimized support vector machine
Abstract. Landslide is a natural disaster that has caused great property losses and human casualties in the world. To strengthen the target prevention and management level, ZhaShui county, Shaanxi province, is selected as the research area to evaluate the landslide susceptibility. First of all, under the premise of considering the correlation, 10 evaluation factors closely related to landslide disaster (i.e., elevation, rainfall, rock group, slope, slope aspect, vegetation index, landform, distance to residential area, distance to road, distance to river system) are taken together with non-landslide points, which are selected under multi-constraint conditions to form a sample data-set. Secondly, the sample dataset is substituted into the Support Vector Machine (SVM) model optimized by firefly algorithm for training and prediction. Finally, the result map was partitioned according to the natural discontinuous point method, and the landslide susceptibility map was obtained. The results show that the model optimized by the firefly algorithm has higher accuracy, and the landslide susceptibility results are more consistent with the actual distribution of disaster points.