{"title":"基于事件的目标跟踪的平移和尺度不变性","authors":"Jens Egholm Pedersen, Raghav Singhal, J. Conradt","doi":"10.1145/3584954.3584996","DOIUrl":null,"url":null,"abstract":"Without temporal averaging, such as rate codes, it remains challenging to train spiking neural networks for temporal regression tasks. In this work, we present a novel method to accurately predict spatial coordinates from event data with a fully spiking convolutional neural network (SCNN) without temporal averaging. Our method performs on-par with artificial neural networks (ANN) of similar complexity. Additionally, we demonstrate faster convergence in half the time using translation- and scale-invariant receptive fields. To permit comparison with conventional frame-based ANNs, we base our results on a simulated event-based dataset with an unrealistic high density. Therefore, we hypothesize that our method significantly outperform ANNs in settings with lower event density, as seen in real-life event-based data. Our model is fully spiking and can be ported directly to neuromorphic hardware.","PeriodicalId":375527,"journal":{"name":"Proceedings of the 2023 Annual Neuro-Inspired Computational Elements Conference","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Translation and Scale Invariance for Event-Based Object tracking\",\"authors\":\"Jens Egholm Pedersen, Raghav Singhal, J. Conradt\",\"doi\":\"10.1145/3584954.3584996\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Without temporal averaging, such as rate codes, it remains challenging to train spiking neural networks for temporal regression tasks. In this work, we present a novel method to accurately predict spatial coordinates from event data with a fully spiking convolutional neural network (SCNN) without temporal averaging. Our method performs on-par with artificial neural networks (ANN) of similar complexity. Additionally, we demonstrate faster convergence in half the time using translation- and scale-invariant receptive fields. To permit comparison with conventional frame-based ANNs, we base our results on a simulated event-based dataset with an unrealistic high density. Therefore, we hypothesize that our method significantly outperform ANNs in settings with lower event density, as seen in real-life event-based data. Our model is fully spiking and can be ported directly to neuromorphic hardware.\",\"PeriodicalId\":375527,\"journal\":{\"name\":\"Proceedings of the 2023 Annual Neuro-Inspired Computational Elements Conference\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2023 Annual Neuro-Inspired Computational Elements Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3584954.3584996\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2023 Annual Neuro-Inspired Computational Elements Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3584954.3584996","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Translation and Scale Invariance for Event-Based Object tracking
Without temporal averaging, such as rate codes, it remains challenging to train spiking neural networks for temporal regression tasks. In this work, we present a novel method to accurately predict spatial coordinates from event data with a fully spiking convolutional neural network (SCNN) without temporal averaging. Our method performs on-par with artificial neural networks (ANN) of similar complexity. Additionally, we demonstrate faster convergence in half the time using translation- and scale-invariant receptive fields. To permit comparison with conventional frame-based ANNs, we base our results on a simulated event-based dataset with an unrealistic high density. Therefore, we hypothesize that our method significantly outperform ANNs in settings with lower event density, as seen in real-life event-based data. Our model is fully spiking and can be ported directly to neuromorphic hardware.