基于k近邻分类器的多智能体事件检测系统

N. S. Suriani, A. Hussain, M. A. Zulkifley
{"title":"基于k近邻分类器的多智能体事件检测系统","authors":"N. S. Suriani, A. Hussain, M. A. Zulkifley","doi":"10.1109/ELINFOCOM.2014.6914382","DOIUrl":null,"url":null,"abstract":"This paper affords a method for the automatic multi-agent event recognition (M-AER) of snatch theft event. M-AER is known to be difficult since parameters such as motion, background, appearance, illumination etc. are constantly changing. In this work, motion vector flow (MVF) and directional motion histogram (DMH) that capture the interaction between two persons in a video sequence are being proposed as input of the M-AER. Assuring result of 90% accuracy has been achieved for the snatch theft detection.","PeriodicalId":360207,"journal":{"name":"2014 International Conference on Electronics, Information and Communications (ICEIC)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Multi-agent event detection system using k-nearest neighbor classifier\",\"authors\":\"N. S. Suriani, A. Hussain, M. A. Zulkifley\",\"doi\":\"10.1109/ELINFOCOM.2014.6914382\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper affords a method for the automatic multi-agent event recognition (M-AER) of snatch theft event. M-AER is known to be difficult since parameters such as motion, background, appearance, illumination etc. are constantly changing. In this work, motion vector flow (MVF) and directional motion histogram (DMH) that capture the interaction between two persons in a video sequence are being proposed as input of the M-AER. Assuring result of 90% accuracy has been achieved for the snatch theft detection.\",\"PeriodicalId\":360207,\"journal\":{\"name\":\"2014 International Conference on Electronics, Information and Communications (ICEIC)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Conference on Electronics, Information and Communications (ICEIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ELINFOCOM.2014.6914382\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Electronics, Information and Communications (ICEIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ELINFOCOM.2014.6914382","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

提出了一种基于多智能体的盗窃事件自动识别方法。众所周知,M-AER是困难的,因为运动、背景、外观、照明等参数都在不断变化。在这项工作中,运动矢量流(MVF)和定向运动直方图(DMH)捕获视频序列中两个人之间的相互作用,被提议作为M-AER的输入。该系统对抢掠盗窃的检测准确率达到90%以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-agent event detection system using k-nearest neighbor classifier
This paper affords a method for the automatic multi-agent event recognition (M-AER) of snatch theft event. M-AER is known to be difficult since parameters such as motion, background, appearance, illumination etc. are constantly changing. In this work, motion vector flow (MVF) and directional motion histogram (DMH) that capture the interaction between two persons in a video sequence are being proposed as input of the M-AER. Assuring result of 90% accuracy has been achieved for the snatch theft detection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信