基于文本的图像字幕的增强嵌入空间方法

Doanh C. Bui, Truc Trinh, Nguyen D. Vo, Khang Nguyen
{"title":"基于文本的图像字幕的增强嵌入空间方法","authors":"Doanh C. Bui, Truc Trinh, Nguyen D. Vo, Khang Nguyen","doi":"10.1109/NICS54270.2021.9701576","DOIUrl":null,"url":null,"abstract":"Scene text-based Image Captioning is the problem that generates caption for an input image using both contexts of image and scene text information. To improve the performance of this problem, in this paper, we propose two modules, Objects-augmented and Grid features augmentation, to enhance spatial location information and global information understanding in images based on M4C-Captioner architecture for text-based Image Captioning problems. Experimental results on the TextCaps dataset show that our method achieves superior performance compared with the M4C-Captioner baseline approach. Our highest result on the Standard Test set is 20.02% and 85.64% in the two metrics BLEU4 and CIDEr, respectively.","PeriodicalId":296963,"journal":{"name":"2021 8th NAFOSTED Conference on Information and Computer Science (NICS)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Augmented Embedding Spaces approach for Text-based Image Captioning\",\"authors\":\"Doanh C. Bui, Truc Trinh, Nguyen D. Vo, Khang Nguyen\",\"doi\":\"10.1109/NICS54270.2021.9701576\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Scene text-based Image Captioning is the problem that generates caption for an input image using both contexts of image and scene text information. To improve the performance of this problem, in this paper, we propose two modules, Objects-augmented and Grid features augmentation, to enhance spatial location information and global information understanding in images based on M4C-Captioner architecture for text-based Image Captioning problems. Experimental results on the TextCaps dataset show that our method achieves superior performance compared with the M4C-Captioner baseline approach. Our highest result on the Standard Test set is 20.02% and 85.64% in the two metrics BLEU4 and CIDEr, respectively.\",\"PeriodicalId\":296963,\"journal\":{\"name\":\"2021 8th NAFOSTED Conference on Information and Computer Science (NICS)\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 8th NAFOSTED Conference on Information and Computer Science (NICS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NICS54270.2021.9701576\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 8th NAFOSTED Conference on Information and Computer Science (NICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NICS54270.2021.9701576","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于场景文本的图像字幕是使用图像和场景文本信息的上下文为输入图像生成标题的问题。为了提高这一问题的性能,在本文中,我们提出了两个模块,对象增强和网格特征增强,以增强空间位置信息和全局信息的理解基于M4C-Captioner架构的基于文本的图像字幕问题。在TextCaps数据集上的实验结果表明,与M4C-Captioner基线方法相比,我们的方法取得了更好的性能。我们在标准测试集中的最高结果是BLEU4和CIDEr两个指标分别为20.02%和85.64%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Augmented Embedding Spaces approach for Text-based Image Captioning
Scene text-based Image Captioning is the problem that generates caption for an input image using both contexts of image and scene text information. To improve the performance of this problem, in this paper, we propose two modules, Objects-augmented and Grid features augmentation, to enhance spatial location information and global information understanding in images based on M4C-Captioner architecture for text-based Image Captioning problems. Experimental results on the TextCaps dataset show that our method achieves superior performance compared with the M4C-Captioner baseline approach. Our highest result on the Standard Test set is 20.02% and 85.64% in the two metrics BLEU4 and CIDEr, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信