AA2024铝合金热处理特性的研究

Fatima Ezzohra El Garchani, M. Kabiri
{"title":"AA2024铝合金热处理特性的研究","authors":"Fatima Ezzohra El Garchani, M. Kabiri","doi":"10.47352/jmans.2774-3047.166","DOIUrl":null,"url":null,"abstract":"This study examined the behavior of AA2024 aluminum alloys, which received different heat treatments, i.e., homogenization, quenching, artificial aging, and recrystallization. The homogenization temperature is set at 495 °C for 5 hours and followed by slow cooling in the furnace. Then a quenching treatment was done with cold water. Artificially aged alloys were heated to 495 °C for 5 hours, followed by rapid water cooling, then heating to 140 °C for 2 hours, and followed by slow cooling in the furnace. The recrystallization treatment was also studied by heating the solution to 495 °C for 5 hours, followed by rapid cooling with cold water and heating to 310 °C for 3 hours in the furnace. In this study, we used an optical microscope and a scanning electron microscope to analyze the microstructures of the samples. X-ray fluorescence analysis was used to determine the proportion of each element on the surface of each alloy. Phase and structural analyses were performed by X-ray diffraction while the mass loss was calculated after 60 hours of exposure for all samples in a climate chamber. Our work revealed that the rate of mass loss could decrease with heat treatment of the alloy due to the emergence of additional phases and dispersoids. The result showed that the surface fraction of each element was changed due to heat treatment in an aggressive environment, in which the Al2Cu and Al2CuMg phases disappeared after the solution treatment as revealed from the XRD data.","PeriodicalId":264018,"journal":{"name":"Journal of Multidisciplinary Applied Natural Science","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Study on Characteristics of Heat Treatment of The AA2024 Aluminum Alloys\",\"authors\":\"Fatima Ezzohra El Garchani, M. Kabiri\",\"doi\":\"10.47352/jmans.2774-3047.166\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study examined the behavior of AA2024 aluminum alloys, which received different heat treatments, i.e., homogenization, quenching, artificial aging, and recrystallization. The homogenization temperature is set at 495 °C for 5 hours and followed by slow cooling in the furnace. Then a quenching treatment was done with cold water. Artificially aged alloys were heated to 495 °C for 5 hours, followed by rapid water cooling, then heating to 140 °C for 2 hours, and followed by slow cooling in the furnace. The recrystallization treatment was also studied by heating the solution to 495 °C for 5 hours, followed by rapid cooling with cold water and heating to 310 °C for 3 hours in the furnace. In this study, we used an optical microscope and a scanning electron microscope to analyze the microstructures of the samples. X-ray fluorescence analysis was used to determine the proportion of each element on the surface of each alloy. Phase and structural analyses were performed by X-ray diffraction while the mass loss was calculated after 60 hours of exposure for all samples in a climate chamber. Our work revealed that the rate of mass loss could decrease with heat treatment of the alloy due to the emergence of additional phases and dispersoids. The result showed that the surface fraction of each element was changed due to heat treatment in an aggressive environment, in which the Al2Cu and Al2CuMg phases disappeared after the solution treatment as revealed from the XRD data.\",\"PeriodicalId\":264018,\"journal\":{\"name\":\"Journal of Multidisciplinary Applied Natural Science\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Multidisciplinary Applied Natural Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47352/jmans.2774-3047.166\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Multidisciplinary Applied Natural Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47352/jmans.2774-3047.166","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

研究了AA2024铝合金经过均匀化、淬火、人工时效和再结晶等不同热处理后的性能。均质温度设为495℃,持续5小时,然后在炉中缓慢冷却。然后用冷水进行淬火处理。将人工时效合金加热至495℃5小时,然后进行快速水冷却,然后加热至140℃2小时,然后在炉中缓慢冷却。再结晶处理方法为:将溶液加热至495℃5小时,然后用冷水快速冷却,在炉中加热至310℃3小时。在本研究中,我们使用光学显微镜和扫描电镜对样品的微观结构进行了分析。采用x射线荧光分析法测定各合金表面各元素的含量比例。通过x射线衍射进行物相和结构分析,同时计算所有样品在气候室中暴露60小时后的质量损失。我们的工作表明,由于出现了额外的相和分散体,合金的热处理可以降低质量损失率。结果表明,在腐蚀环境下热处理,各元素的表面分数发生了变化,其中Al2Cu和Al2CuMg相在固溶处理后消失。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Study on Characteristics of Heat Treatment of The AA2024 Aluminum Alloys
This study examined the behavior of AA2024 aluminum alloys, which received different heat treatments, i.e., homogenization, quenching, artificial aging, and recrystallization. The homogenization temperature is set at 495 °C for 5 hours and followed by slow cooling in the furnace. Then a quenching treatment was done with cold water. Artificially aged alloys were heated to 495 °C for 5 hours, followed by rapid water cooling, then heating to 140 °C for 2 hours, and followed by slow cooling in the furnace. The recrystallization treatment was also studied by heating the solution to 495 °C for 5 hours, followed by rapid cooling with cold water and heating to 310 °C for 3 hours in the furnace. In this study, we used an optical microscope and a scanning electron microscope to analyze the microstructures of the samples. X-ray fluorescence analysis was used to determine the proportion of each element on the surface of each alloy. Phase and structural analyses were performed by X-ray diffraction while the mass loss was calculated after 60 hours of exposure for all samples in a climate chamber. Our work revealed that the rate of mass loss could decrease with heat treatment of the alloy due to the emergence of additional phases and dispersoids. The result showed that the surface fraction of each element was changed due to heat treatment in an aggressive environment, in which the Al2Cu and Al2CuMg phases disappeared after the solution treatment as revealed from the XRD data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信