基于图像处理和机器学习的海洋化学污染检测

Lingyun Chen, Min Gao, Langyue Wang, Chuhan Xue
{"title":"基于图像处理和机器学习的海洋化学污染检测","authors":"Lingyun Chen, Min Gao, Langyue Wang, Chuhan Xue","doi":"10.1145/3573428.3573785","DOIUrl":null,"url":null,"abstract":"The problem of oil spills is lethal to the ocean ecosystem. To solve the problem, one of the most important key steps is to detect the ocean surface and judge whether there are or not oil spills. Remote sensing provides the advantage of controlling and observing events remotely, and it can cover the areas that people cannot access, so we use it to build a database. Next, we choose to use Matlab for the pre-image processing and then use the neural network by Python to realize and there are five pre-processing methods: expanding the dynamic histogram range in the ‘Y’ channel (method 1), expanding the dynamic histogram range in three channels (method 2), contrast enhancement (method 3), expanding the dynamic histogram range and then contrast enhancement (method 4), and contrast enhancement, and then expanding the dynamic histogram range (method 5). Finally, we use a neural network to test accuracy, in comparison, method 1 is the best and we improve the accuracy from 72% to 82%.","PeriodicalId":314698,"journal":{"name":"Proceedings of the 2022 6th International Conference on Electronic Information Technology and Computer Engineering","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detection of Marine Chemical Pollution Based on Image Processing and Machine Learning\",\"authors\":\"Lingyun Chen, Min Gao, Langyue Wang, Chuhan Xue\",\"doi\":\"10.1145/3573428.3573785\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The problem of oil spills is lethal to the ocean ecosystem. To solve the problem, one of the most important key steps is to detect the ocean surface and judge whether there are or not oil spills. Remote sensing provides the advantage of controlling and observing events remotely, and it can cover the areas that people cannot access, so we use it to build a database. Next, we choose to use Matlab for the pre-image processing and then use the neural network by Python to realize and there are five pre-processing methods: expanding the dynamic histogram range in the ‘Y’ channel (method 1), expanding the dynamic histogram range in three channels (method 2), contrast enhancement (method 3), expanding the dynamic histogram range and then contrast enhancement (method 4), and contrast enhancement, and then expanding the dynamic histogram range (method 5). Finally, we use a neural network to test accuracy, in comparison, method 1 is the best and we improve the accuracy from 72% to 82%.\",\"PeriodicalId\":314698,\"journal\":{\"name\":\"Proceedings of the 2022 6th International Conference on Electronic Information Technology and Computer Engineering\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2022 6th International Conference on Electronic Information Technology and Computer Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3573428.3573785\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 6th International Conference on Electronic Information Technology and Computer Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3573428.3573785","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

石油泄漏问题对海洋生态系统是致命的。要解决这一问题,最重要的关键步骤之一是探测海面并判断是否有石油泄漏。遥感提供了远程控制和观测事件的优势,它可以覆盖人们无法进入的区域,因此我们利用它来建立数据库。接下来,我们选择使用Matlab对图像进行预处理,然后通过Python使用神经网络实现,预处理方法有五种:方法1:扩展“Y”通道的动态直方图范围(方法1),扩展三个通道的动态直方图范围(方法2),对比度增强(方法3),扩展动态直方图范围后再进行对比度增强(方法4),对比度增强后再扩展动态直方图范围(方法5)。最后,我们使用神经网络进行精度测试,通过比较,方法1是最好的,我们将准确率从72%提高到82%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Detection of Marine Chemical Pollution Based on Image Processing and Machine Learning
The problem of oil spills is lethal to the ocean ecosystem. To solve the problem, one of the most important key steps is to detect the ocean surface and judge whether there are or not oil spills. Remote sensing provides the advantage of controlling and observing events remotely, and it can cover the areas that people cannot access, so we use it to build a database. Next, we choose to use Matlab for the pre-image processing and then use the neural network by Python to realize and there are five pre-processing methods: expanding the dynamic histogram range in the ‘Y’ channel (method 1), expanding the dynamic histogram range in three channels (method 2), contrast enhancement (method 3), expanding the dynamic histogram range and then contrast enhancement (method 4), and contrast enhancement, and then expanding the dynamic histogram range (method 5). Finally, we use a neural network to test accuracy, in comparison, method 1 is the best and we improve the accuracy from 72% to 82%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信