迈向无信任预测即服务

G. Santhosh, Dario Bruneo, F. Longo, A. Puliafito
{"title":"迈向无信任预测即服务","authors":"G. Santhosh, Dario Bruneo, F. Longo, A. Puliafito","doi":"10.1109/SMARTCOMP.2019.00068","DOIUrl":null,"url":null,"abstract":"Prediction-as-a-Service is a promising new paradigm that brings the advantages of Software-as-a-Service's business model to the world of prediction APIs. In such a scenario, prediction API providers can leverage a Cloud provider's infrastructure to offer their inference service to the general public without having to worry about infrastructure acquisition and operation costs. Indeed, in the case of prediction APIs, self-hosting costs could be much higher than usual due to the fact that inference models, e.g., deep learning models, need specific hardware (e.g., graphical processing units) for an efficient execution. In such a context, trust is of great importance as the prediction API provider's most valuable asset, i.e., the inference model, is transferred to the Cloud provider. Thus, specific countermeasures should be designed to mitigate the possible attacks. In this paper, we analyze this scenario identifying the peculiar threat models. Then, we present a decentralized blockchain-based system, implemented on top of the popular Tendermint framework, that provides countermeasures to some of the main attacks. Numerical results, obtained executing deep neural network models, demonstrate that the overhead with respect to a centralized approach is negligible if compared with the advantages in terms of prevention of malicious behaviors.","PeriodicalId":253364,"journal":{"name":"2019 IEEE International Conference on Smart Computing (SMARTCOMP)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Towards Trustless Prediction-as-a-Service\",\"authors\":\"G. Santhosh, Dario Bruneo, F. Longo, A. Puliafito\",\"doi\":\"10.1109/SMARTCOMP.2019.00068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Prediction-as-a-Service is a promising new paradigm that brings the advantages of Software-as-a-Service's business model to the world of prediction APIs. In such a scenario, prediction API providers can leverage a Cloud provider's infrastructure to offer their inference service to the general public without having to worry about infrastructure acquisition and operation costs. Indeed, in the case of prediction APIs, self-hosting costs could be much higher than usual due to the fact that inference models, e.g., deep learning models, need specific hardware (e.g., graphical processing units) for an efficient execution. In such a context, trust is of great importance as the prediction API provider's most valuable asset, i.e., the inference model, is transferred to the Cloud provider. Thus, specific countermeasures should be designed to mitigate the possible attacks. In this paper, we analyze this scenario identifying the peculiar threat models. Then, we present a decentralized blockchain-based system, implemented on top of the popular Tendermint framework, that provides countermeasures to some of the main attacks. Numerical results, obtained executing deep neural network models, demonstrate that the overhead with respect to a centralized approach is negligible if compared with the advantages in terms of prevention of malicious behaviors.\",\"PeriodicalId\":253364,\"journal\":{\"name\":\"2019 IEEE International Conference on Smart Computing (SMARTCOMP)\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Conference on Smart Computing (SMARTCOMP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SMARTCOMP.2019.00068\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Smart Computing (SMARTCOMP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMARTCOMP.2019.00068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

预测即服务(prediction -as-a- service)是一种很有前途的新范式,它将软件即服务(Software-as-a-Service)业务模型的优势带入了预测api的世界。在这种情况下,预测API提供商可以利用云提供商的基础设施向公众提供他们的推理服务,而不必担心基础设施的获取和运营成本。事实上,在预测api的情况下,自托管成本可能比通常要高得多,因为推理模型(例如深度学习模型)需要特定的硬件(例如图形处理单元)才能有效执行。在这种情况下,信任是非常重要的,因为预测API提供商的最有价值的资产,即推理模型,被转移到云提供商。因此,应该设计具体的对策来减轻可能的攻击。在本文中,我们分析了这一场景,确定了特殊的威胁模型。然后,我们提出了一个分散的基于区块链的系统,该系统在流行的Tendermint框架上实现,为一些主要攻击提供对策。执行深度神经网络模型获得的数值结果表明,与预防恶意行为方面的优势相比,集中式方法的开销可以忽略不计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards Trustless Prediction-as-a-Service
Prediction-as-a-Service is a promising new paradigm that brings the advantages of Software-as-a-Service's business model to the world of prediction APIs. In such a scenario, prediction API providers can leverage a Cloud provider's infrastructure to offer their inference service to the general public without having to worry about infrastructure acquisition and operation costs. Indeed, in the case of prediction APIs, self-hosting costs could be much higher than usual due to the fact that inference models, e.g., deep learning models, need specific hardware (e.g., graphical processing units) for an efficient execution. In such a context, trust is of great importance as the prediction API provider's most valuable asset, i.e., the inference model, is transferred to the Cloud provider. Thus, specific countermeasures should be designed to mitigate the possible attacks. In this paper, we analyze this scenario identifying the peculiar threat models. Then, we present a decentralized blockchain-based system, implemented on top of the popular Tendermint framework, that provides countermeasures to some of the main attacks. Numerical results, obtained executing deep neural network models, demonstrate that the overhead with respect to a centralized approach is negligible if compared with the advantages in terms of prevention of malicious behaviors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信