无线传感器网络中的移动辅助时空检测

G. Xing, Jianping Wang, Ke Shen, Qingfeng Huang, X. Jia, H. So
{"title":"无线传感器网络中的移动辅助时空检测","authors":"G. Xing, Jianping Wang, Ke Shen, Qingfeng Huang, X. Jia, H. So","doi":"10.1109/ICDCS.2008.81","DOIUrl":null,"url":null,"abstract":"Wireless sensor networks (WSNs) deployed for mission-critical applications face the fundamental challenge of meeting stringent spatiotemporal performance requirements using nodes with limited sensing capacity. Although advance network planning and dense node deployment may initially achieve the required performance, they often fail to adapt to the unpredictability of physical reality. This paper explores efficient use of mobile sensors to address the limitations of static WSNs in target detection. We propose a data fusion model that enables static and mobile sensors to effectively collaborate in target detection. An optimal sensor movement scheduling algorithm is developed to minimize the total moving distance of sensors while achieving a set of spatiotemporal performance requirements including high detection probability, low system false alarm rate and bounded detection delay. The effectiveness of our approach is validated by extensive simulations based on real data traces collected by 23 sensor nodes.","PeriodicalId":240205,"journal":{"name":"2008 The 28th International Conference on Distributed Computing Systems","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"43","resultStr":"{\"title\":\"Mobility-Assisted Spatiotemporal Detection in Wireless Sensor Networks\",\"authors\":\"G. Xing, Jianping Wang, Ke Shen, Qingfeng Huang, X. Jia, H. So\",\"doi\":\"10.1109/ICDCS.2008.81\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wireless sensor networks (WSNs) deployed for mission-critical applications face the fundamental challenge of meeting stringent spatiotemporal performance requirements using nodes with limited sensing capacity. Although advance network planning and dense node deployment may initially achieve the required performance, they often fail to adapt to the unpredictability of physical reality. This paper explores efficient use of mobile sensors to address the limitations of static WSNs in target detection. We propose a data fusion model that enables static and mobile sensors to effectively collaborate in target detection. An optimal sensor movement scheduling algorithm is developed to minimize the total moving distance of sensors while achieving a set of spatiotemporal performance requirements including high detection probability, low system false alarm rate and bounded detection delay. The effectiveness of our approach is validated by extensive simulations based on real data traces collected by 23 sensor nodes.\",\"PeriodicalId\":240205,\"journal\":{\"name\":\"2008 The 28th International Conference on Distributed Computing Systems\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"43\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 The 28th International Conference on Distributed Computing Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDCS.2008.81\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 The 28th International Conference on Distributed Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDCS.2008.81","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 43

摘要

用于关键任务应用的无线传感器网络(wsn)面临着使用有限传感容量的节点来满足严格的时空性能要求的基本挑战。尽管预先的网络规划和密集的节点部署可能在最初达到所需的性能,但它们往往无法适应物理现实的不可预测性。本文探讨了如何有效地利用移动传感器来解决静态wsn在目标检测方面的局限性。我们提出了一种数据融合模型,使静态和移动传感器能够有效地协同进行目标检测。为了在满足高检测概率、低系统虚警率和有界检测延迟等时空性能要求的前提下,使传感器的总移动距离最小,提出了一种最优传感器运动调度算法。基于23个传感器节点收集的真实数据轨迹的大量仿真验证了我们方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mobility-Assisted Spatiotemporal Detection in Wireless Sensor Networks
Wireless sensor networks (WSNs) deployed for mission-critical applications face the fundamental challenge of meeting stringent spatiotemporal performance requirements using nodes with limited sensing capacity. Although advance network planning and dense node deployment may initially achieve the required performance, they often fail to adapt to the unpredictability of physical reality. This paper explores efficient use of mobile sensors to address the limitations of static WSNs in target detection. We propose a data fusion model that enables static and mobile sensors to effectively collaborate in target detection. An optimal sensor movement scheduling algorithm is developed to minimize the total moving distance of sensors while achieving a set of spatiotemporal performance requirements including high detection probability, low system false alarm rate and bounded detection delay. The effectiveness of our approach is validated by extensive simulations based on real data traces collected by 23 sensor nodes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信