利用块涡轮码的二维马尔可夫源相关

M. Izhar, N. Fisal, Xiaobo Zhou, K. Anwar, T. Matsumoto
{"title":"利用块涡轮码的二维马尔可夫源相关","authors":"M. Izhar, N. Fisal, Xiaobo Zhou, K. Anwar, T. Matsumoto","doi":"10.1109/ISTC.2012.6325198","DOIUrl":null,"url":null,"abstract":"This paper proposes a joint source-channel coding technique using high rate block turbo codes where two-dimensional (2-D) source correlation of binary Markov source is well exploited. A modified Bahl-Cocke-Jelinek-Raviv (BCJR) algorithm is used in both horizontal and vertical decoders to exploit the 2-D source correlation. Based on extrinsic information transfer (EXIT) chart analysis and trajectory evaluation, we found out that the log-likelihood ratio (LLR) correlation for the block turbo codes increases as the source correlation becomes stronger and this prevents iterative decoding from convergence. A memory-1 accumulator with random interleaver is added to the design to minimise the LLR correlation and to achieve better performance when the source correlation is very strong. Further improvement can be achieved by replacing the memory-1 accumulator with a longer memory code to further reduce the statistical dependency of the LLR. It is shown that the proposed technique can achieve significant improvement over the standard system where the source correlation is not exploited.","PeriodicalId":197982,"journal":{"name":"2012 7th International Symposium on Turbo Codes and Iterative Information Processing (ISTC)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Utilization of 2-D Markov source correlation using block turbo codes\",\"authors\":\"M. Izhar, N. Fisal, Xiaobo Zhou, K. Anwar, T. Matsumoto\",\"doi\":\"10.1109/ISTC.2012.6325198\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a joint source-channel coding technique using high rate block turbo codes where two-dimensional (2-D) source correlation of binary Markov source is well exploited. A modified Bahl-Cocke-Jelinek-Raviv (BCJR) algorithm is used in both horizontal and vertical decoders to exploit the 2-D source correlation. Based on extrinsic information transfer (EXIT) chart analysis and trajectory evaluation, we found out that the log-likelihood ratio (LLR) correlation for the block turbo codes increases as the source correlation becomes stronger and this prevents iterative decoding from convergence. A memory-1 accumulator with random interleaver is added to the design to minimise the LLR correlation and to achieve better performance when the source correlation is very strong. Further improvement can be achieved by replacing the memory-1 accumulator with a longer memory code to further reduce the statistical dependency of the LLR. It is shown that the proposed technique can achieve significant improvement over the standard system where the source correlation is not exploited.\",\"PeriodicalId\":197982,\"journal\":{\"name\":\"2012 7th International Symposium on Turbo Codes and Iterative Information Processing (ISTC)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 7th International Symposium on Turbo Codes and Iterative Information Processing (ISTC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISTC.2012.6325198\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 7th International Symposium on Turbo Codes and Iterative Information Processing (ISTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISTC.2012.6325198","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

本文提出了一种利用二元马尔可夫信源二维相关性的高速率分组turbo码联合信源信道编码技术。在水平解码器和垂直解码器中使用了一种改进的Bahl-Cocke-Jelinek-Raviv (BCJR)算法来利用二维源相关性。基于外部信息传递(EXIT)图分析和轨迹评估,发现分组turbo码的对数似然比(LLR)相关性随着码源相关性的增强而增大,从而抑制了迭代译码的收敛性。在设计中加入了带有随机交织器的存储器-1累加器,以最小化LLR相关性,并在源相关性非常强时获得更好的性能。进一步的改进可以通过用更长的内存代码替换memory-1累加器来实现,以进一步减少LLR的统计依赖性。实验结果表明,与不利用源相关性的标准系统相比,该技术可以取得显著的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Utilization of 2-D Markov source correlation using block turbo codes
This paper proposes a joint source-channel coding technique using high rate block turbo codes where two-dimensional (2-D) source correlation of binary Markov source is well exploited. A modified Bahl-Cocke-Jelinek-Raviv (BCJR) algorithm is used in both horizontal and vertical decoders to exploit the 2-D source correlation. Based on extrinsic information transfer (EXIT) chart analysis and trajectory evaluation, we found out that the log-likelihood ratio (LLR) correlation for the block turbo codes increases as the source correlation becomes stronger and this prevents iterative decoding from convergence. A memory-1 accumulator with random interleaver is added to the design to minimise the LLR correlation and to achieve better performance when the source correlation is very strong. Further improvement can be achieved by replacing the memory-1 accumulator with a longer memory code to further reduce the statistical dependency of the LLR. It is shown that the proposed technique can achieve significant improvement over the standard system where the source correlation is not exploited.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信