用于推荐的张张化行列式点过程

Romain Warlop, Jérémie Mary, Mike Gartrell
{"title":"用于推荐的张张化行列式点过程","authors":"Romain Warlop, Jérémie Mary, Mike Gartrell","doi":"10.1145/3292500.3330952","DOIUrl":null,"url":null,"abstract":"Interest in determinantal point processes (DPPs) is increasing in machine learning due to their ability to provide an elegant parametric model over combinatorial sets. In particular, the number of required parameters in a DPP grows only quadratically with the size of the ground set (e.g., item catalog), while the number of possible sets of items grows exponentially. Recent work has shown that DPPs can be effective models for product recommendation and basket completion tasks, since they are able to account for both the diversity and quality of items within a set. We present an enhanced DPP model that is specialized for the task of basket completion, the tensorized DPP. We leverage ideas from tensor factorization in order to customize the model for the next-item basket completion task, where the next item is captured in an extra dimension of the model. We evaluate our model on several real-world datasets, and find that the tensorized DPP provides significantly better predictive quality in several settings than a number of state-of-the art models.","PeriodicalId":186134,"journal":{"name":"Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining","volume":"477 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Tensorized Determinantal Point Processes for Recommendation\",\"authors\":\"Romain Warlop, Jérémie Mary, Mike Gartrell\",\"doi\":\"10.1145/3292500.3330952\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Interest in determinantal point processes (DPPs) is increasing in machine learning due to their ability to provide an elegant parametric model over combinatorial sets. In particular, the number of required parameters in a DPP grows only quadratically with the size of the ground set (e.g., item catalog), while the number of possible sets of items grows exponentially. Recent work has shown that DPPs can be effective models for product recommendation and basket completion tasks, since they are able to account for both the diversity and quality of items within a set. We present an enhanced DPP model that is specialized for the task of basket completion, the tensorized DPP. We leverage ideas from tensor factorization in order to customize the model for the next-item basket completion task, where the next item is captured in an extra dimension of the model. We evaluate our model on several real-world datasets, and find that the tensorized DPP provides significantly better predictive quality in several settings than a number of state-of-the art models.\",\"PeriodicalId\":186134,\"journal\":{\"name\":\"Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining\",\"volume\":\"477 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3292500.3330952\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3292500.3330952","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

由于确定点过程(DPPs)能够在组合集上提供优雅的参数模型,因此在机器学习中对确定点过程(DPPs)的兴趣正在增加。特别是,DPP中所需参数的数量仅随基础集(例如,项目目录)的大小呈二次增长,而可能的项目集的数量呈指数增长。最近的研究表明,dpp可以成为产品推荐和购物篮完成任务的有效模型,因为它们能够考虑到一组商品的多样性和质量。我们提出了一个增强的DPP模型,专门用于篮完成任务,张拉DPP。我们利用张量分解的思想,为下一项购物篮完成任务定制模型,其中下一项是在模型的额外维度中捕获的。我们在几个真实世界的数据集上评估了我们的模型,发现张张化的DPP在几个设置中比许多最先进的模型提供了更好的预测质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tensorized Determinantal Point Processes for Recommendation
Interest in determinantal point processes (DPPs) is increasing in machine learning due to their ability to provide an elegant parametric model over combinatorial sets. In particular, the number of required parameters in a DPP grows only quadratically with the size of the ground set (e.g., item catalog), while the number of possible sets of items grows exponentially. Recent work has shown that DPPs can be effective models for product recommendation and basket completion tasks, since they are able to account for both the diversity and quality of items within a set. We present an enhanced DPP model that is specialized for the task of basket completion, the tensorized DPP. We leverage ideas from tensor factorization in order to customize the model for the next-item basket completion task, where the next item is captured in an extra dimension of the model. We evaluate our model on several real-world datasets, and find that the tensorized DPP provides significantly better predictive quality in several settings than a number of state-of-the art models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信