使用数据挖掘技术检索图像

C. Joseph, Aswathy Wilson
{"title":"使用数据挖掘技术检索图像","authors":"C. Joseph, Aswathy Wilson","doi":"10.1109/IC3I.2014.7019795","DOIUrl":null,"url":null,"abstract":"Data mining is an emerging research area, because of the generation of large volume of data. The image mining is new branch of data mining, which deals with the analysis of image data. There is several methods for retrieving images from a large dataset. But they have some drawbacks. In this paper using image mining techniques like clustering and associations rules mining for mine the data from image. And also it uses the fusion of multimodal features like visual and textual. This system produces a better precise and recalls values.","PeriodicalId":430848,"journal":{"name":"2014 International Conference on Contemporary Computing and Informatics (IC3I)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Retrieval of images using data mining techniques\",\"authors\":\"C. Joseph, Aswathy Wilson\",\"doi\":\"10.1109/IC3I.2014.7019795\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data mining is an emerging research area, because of the generation of large volume of data. The image mining is new branch of data mining, which deals with the analysis of image data. There is several methods for retrieving images from a large dataset. But they have some drawbacks. In this paper using image mining techniques like clustering and associations rules mining for mine the data from image. And also it uses the fusion of multimodal features like visual and textual. This system produces a better precise and recalls values.\",\"PeriodicalId\":430848,\"journal\":{\"name\":\"2014 International Conference on Contemporary Computing and Informatics (IC3I)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Conference on Contemporary Computing and Informatics (IC3I)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IC3I.2014.7019795\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Contemporary Computing and Informatics (IC3I)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IC3I.2014.7019795","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

数据挖掘是一个新兴的研究领域,因为它产生了大量的数据。图像挖掘是数据挖掘的一个新分支,主要研究图像数据的分析。从大型数据集中检索图像有几种方法。但它们也有一些缺点。本文利用聚类和关联规则挖掘等图像挖掘技术从图像中挖掘数据。它还融合了视觉和文本等多模态特征。该系统产生了更好的精度和召回值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Retrieval of images using data mining techniques
Data mining is an emerging research area, because of the generation of large volume of data. The image mining is new branch of data mining, which deals with the analysis of image data. There is several methods for retrieving images from a large dataset. But they have some drawbacks. In this paper using image mining techniques like clustering and associations rules mining for mine the data from image. And also it uses the fusion of multimodal features like visual and textual. This system produces a better precise and recalls values.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信