基于线段的自组织映射聚类方法

G. Chamundeswari, G. Varma, C. Satyanarayana
{"title":"基于线段的自组织映射聚类方法","authors":"G. Chamundeswari, G. Varma, C. Satyanarayana","doi":"10.4018/jitr.2021100103","DOIUrl":null,"url":null,"abstract":"Clustering techniques are used widely in computer vision and pattern recognition. The clustering techniques are found to be efficient with the feature vector of the input image. So, the present paper uses an approach for evaluating the feature vector by using Hough transformation. With the Hough transformation, the present paper mapped the points to line segment. The line features are considered as the feature vector and are given to the neural network for performing clustering. The present paper uses self-organizing map (SOM) neural network for performing the clustering process. The proposed method is evaluated with various leaf images, and the evaluated performance measures show the efficiency of the proposed method.","PeriodicalId":296080,"journal":{"name":"J. Inf. Technol. Res.","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Line Segment-Based Clustering Approach With Self-Organizing Maps\",\"authors\":\"G. Chamundeswari, G. Varma, C. Satyanarayana\",\"doi\":\"10.4018/jitr.2021100103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Clustering techniques are used widely in computer vision and pattern recognition. The clustering techniques are found to be efficient with the feature vector of the input image. So, the present paper uses an approach for evaluating the feature vector by using Hough transformation. With the Hough transformation, the present paper mapped the points to line segment. The line features are considered as the feature vector and are given to the neural network for performing clustering. The present paper uses self-organizing map (SOM) neural network for performing the clustering process. The proposed method is evaluated with various leaf images, and the evaluated performance measures show the efficiency of the proposed method.\",\"PeriodicalId\":296080,\"journal\":{\"name\":\"J. Inf. Technol. Res.\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Inf. Technol. Res.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/jitr.2021100103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Inf. Technol. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/jitr.2021100103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

聚类技术在计算机视觉和模式识别中有着广泛的应用。发现聚类技术对输入图像的特征向量是有效的。因此,本文采用了一种基于霍夫变换的特征向量评估方法。利用霍夫变换,将点映射到线段上。将直线特征作为特征向量,交给神经网络进行聚类。本文采用自组织映射(SOM)神经网络进行聚类处理。用不同的叶片图像对该方法进行了评价,评价结果表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Line Segment-Based Clustering Approach With Self-Organizing Maps
Clustering techniques are used widely in computer vision and pattern recognition. The clustering techniques are found to be efficient with the feature vector of the input image. So, the present paper uses an approach for evaluating the feature vector by using Hough transformation. With the Hough transformation, the present paper mapped the points to line segment. The line features are considered as the feature vector and are given to the neural network for performing clustering. The present paper uses self-organizing map (SOM) neural network for performing the clustering process. The proposed method is evaluated with various leaf images, and the evaluated performance measures show the efficiency of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信