非线性延迟神经网络的时滞相关渐近稳定性分析

Yuzhong Mo, Jimin Yu
{"title":"非线性延迟神经网络的时滞相关渐近稳定性分析","authors":"Yuzhong Mo, Jimin Yu","doi":"10.1109/ICINFA.2011.5949057","DOIUrl":null,"url":null,"abstract":"In the note, the global asymptotic stability of nonlinear cellular neural networks with constant delay is studied. At first, a transformation is made the nonlinear neural networks into the linear neural networks. Then the Lyapunov-Krasovskii stability theory for functional differential equations and the linear matrix inequality (LMI) approach are employed to investigate the problem. A novel sufficient condition is derived that is less conservative than the ones reported so far in the literature. Numerical examples illustrate the effectiveness of the method and improvement over some existing methods.","PeriodicalId":299418,"journal":{"name":"2011 IEEE International Conference on Information and Automation","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Delay-dependent asymptotical stability analysis of nonlinear delay neural networks\",\"authors\":\"Yuzhong Mo, Jimin Yu\",\"doi\":\"10.1109/ICINFA.2011.5949057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the note, the global asymptotic stability of nonlinear cellular neural networks with constant delay is studied. At first, a transformation is made the nonlinear neural networks into the linear neural networks. Then the Lyapunov-Krasovskii stability theory for functional differential equations and the linear matrix inequality (LMI) approach are employed to investigate the problem. A novel sufficient condition is derived that is less conservative than the ones reported so far in the literature. Numerical examples illustrate the effectiveness of the method and improvement over some existing methods.\",\"PeriodicalId\":299418,\"journal\":{\"name\":\"2011 IEEE International Conference on Information and Automation\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE International Conference on Information and Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICINFA.2011.5949057\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference on Information and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICINFA.2011.5949057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

研究了一类具有常时滞的非线性细胞神经网络的全局渐近稳定性。首先,将非线性神经网络转换为线性神经网络。然后利用泛函微分方程的Lyapunov-Krasovskii稳定性理论和线性矩阵不等式(LMI)方法研究了该问题。导出了一个新的充分条件,它比文献中迄今为止报道的充分条件更保守。数值算例说明了该方法的有效性以及对现有方法的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Delay-dependent asymptotical stability analysis of nonlinear delay neural networks
In the note, the global asymptotic stability of nonlinear cellular neural networks with constant delay is studied. At first, a transformation is made the nonlinear neural networks into the linear neural networks. Then the Lyapunov-Krasovskii stability theory for functional differential equations and the linear matrix inequality (LMI) approach are employed to investigate the problem. A novel sufficient condition is derived that is less conservative than the ones reported so far in the literature. Numerical examples illustrate the effectiveness of the method and improvement over some existing methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信