多尺度图像去噪,同时在稀疏域保持边缘

Srimanta Mandal, S. Kumari, A. Bhavsar, A. Sao
{"title":"多尺度图像去噪,同时在稀疏域保持边缘","authors":"Srimanta Mandal, S. Kumari, A. Bhavsar, A. Sao","doi":"10.1109/EUVIP.2016.7764583","DOIUrl":null,"url":null,"abstract":"Image denoising is a classical and fundamental problem in image processing community. An important challenge in image denoising is to preserve image details while removing noise. However, most of the approaches depend on smoothness assumption of natural images to produce results with smeared edges, hence, degrading the quality. To address this concern, we propose two constraints to better preserve the edges while denoising the image via the sparse representation framework. The first constraint attempts to preserve the edges at the coarser scales of the image as the level of noise drop dramatically at coarser scales. Different levels of scales are considered to account different strength of noise. The second constraint prevents transitional smoothing by preserving the edges of intermediate image estimates across iterations. Experimental results demonstrate the ability of the proposed approach in removing noise while preserving edges in comparison to the state-of-the art approaches.","PeriodicalId":136980,"journal":{"name":"2016 6th European Workshop on Visual Information Processing (EUVIP)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Multi-scale image denoising while preserving edges in sparse domain\",\"authors\":\"Srimanta Mandal, S. Kumari, A. Bhavsar, A. Sao\",\"doi\":\"10.1109/EUVIP.2016.7764583\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Image denoising is a classical and fundamental problem in image processing community. An important challenge in image denoising is to preserve image details while removing noise. However, most of the approaches depend on smoothness assumption of natural images to produce results with smeared edges, hence, degrading the quality. To address this concern, we propose two constraints to better preserve the edges while denoising the image via the sparse representation framework. The first constraint attempts to preserve the edges at the coarser scales of the image as the level of noise drop dramatically at coarser scales. Different levels of scales are considered to account different strength of noise. The second constraint prevents transitional smoothing by preserving the edges of intermediate image estimates across iterations. Experimental results demonstrate the ability of the proposed approach in removing noise while preserving edges in comparison to the state-of-the art approaches.\",\"PeriodicalId\":136980,\"journal\":{\"name\":\"2016 6th European Workshop on Visual Information Processing (EUVIP)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 6th European Workshop on Visual Information Processing (EUVIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EUVIP.2016.7764583\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 6th European Workshop on Visual Information Processing (EUVIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUVIP.2016.7764583","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

图像去噪是图像处理领域的一个经典而基本的问题。图像去噪的一个重要挑战是在去噪的同时保持图像的细节。然而,大多数方法依赖于自然图像的平滑假设,从而产生带有模糊边缘的结果,从而降低了质量。为了解决这个问题,我们提出了两个约束条件,以便在通过稀疏表示框架去噪图像的同时更好地保留边缘。第一个约束试图在图像的粗尺度上保留边缘,因为噪声水平在粗尺度上急剧下降。不同级别的音阶被认为可以反映不同强度的噪音。第二个约束通过在迭代中保留中间图像估计的边缘来防止过渡平滑。实验结果表明,与现有的方法相比,该方法在去除噪声的同时保留了边缘。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-scale image denoising while preserving edges in sparse domain
Image denoising is a classical and fundamental problem in image processing community. An important challenge in image denoising is to preserve image details while removing noise. However, most of the approaches depend on smoothness assumption of natural images to produce results with smeared edges, hence, degrading the quality. To address this concern, we propose two constraints to better preserve the edges while denoising the image via the sparse representation framework. The first constraint attempts to preserve the edges at the coarser scales of the image as the level of noise drop dramatically at coarser scales. Different levels of scales are considered to account different strength of noise. The second constraint prevents transitional smoothing by preserving the edges of intermediate image estimates across iterations. Experimental results demonstrate the ability of the proposed approach in removing noise while preserving edges in comparison to the state-of-the art approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信