基于LSTM和SVR的股票价格预测

G. Bathla
{"title":"基于LSTM和SVR的股票价格预测","authors":"G. Bathla","doi":"10.1109/PDGC50313.2020.9315800","DOIUrl":null,"url":null,"abstract":"Stock price movement is non-linear and complex. Several research works have been carried out to predict stock prices. Traditional approaches such as Linear Regression and Support Vector Regression were used but accuracy was not adequate. Researchers have tried to improve stock price prediction using ARIMA. Due to very high variations in stock prices, deep learning techniques are applied due to its proven accuracy in various analytics fields. Artificial Neural Network was deployed to predict stock prices but as stock prices are time-series based, recurrent neural network was applied to further improve prediction accuracy. In RNN, there is limitation of not able to store high dependencies and also vanishing gradient descent issue exists. Therefore, data scientists and analysts applied LSTM to predict stock price movement. In this paper, LSTM is compared with SVR using various stock index data such as S& P 500, NYSE, NSE, BSE, NASDAQ and Dow Jones industrial Average for experiment analysis. Experiment analysis proves that LSTM provides better accuracy as compared to SVR.","PeriodicalId":347216,"journal":{"name":"2020 Sixth International Conference on Parallel, Distributed and Grid Computing (PDGC)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"Stock Price prediction using LSTM and SVR\",\"authors\":\"G. Bathla\",\"doi\":\"10.1109/PDGC50313.2020.9315800\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Stock price movement is non-linear and complex. Several research works have been carried out to predict stock prices. Traditional approaches such as Linear Regression and Support Vector Regression were used but accuracy was not adequate. Researchers have tried to improve stock price prediction using ARIMA. Due to very high variations in stock prices, deep learning techniques are applied due to its proven accuracy in various analytics fields. Artificial Neural Network was deployed to predict stock prices but as stock prices are time-series based, recurrent neural network was applied to further improve prediction accuracy. In RNN, there is limitation of not able to store high dependencies and also vanishing gradient descent issue exists. Therefore, data scientists and analysts applied LSTM to predict stock price movement. In this paper, LSTM is compared with SVR using various stock index data such as S& P 500, NYSE, NSE, BSE, NASDAQ and Dow Jones industrial Average for experiment analysis. Experiment analysis proves that LSTM provides better accuracy as compared to SVR.\",\"PeriodicalId\":347216,\"journal\":{\"name\":\"2020 Sixth International Conference on Parallel, Distributed and Grid Computing (PDGC)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 Sixth International Conference on Parallel, Distributed and Grid Computing (PDGC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PDGC50313.2020.9315800\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Sixth International Conference on Parallel, Distributed and Grid Computing (PDGC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PDGC50313.2020.9315800","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

摘要

股票价格的变动是非线性的、复杂的。已经进行了几项预测股票价格的研究工作。传统的方法,如线性回归和支持向量回归,但精度不够。研究人员试图利用ARIMA改进股价预测。由于股票价格的变化非常大,深度学习技术因其在各种分析领域的准确性而得到应用。采用人工神经网络进行股票价格预测,但由于股票价格具有时间序列特征,为了进一步提高预测精度,采用递归神经网络进行预测。在RNN中,存在不能存储高依赖关系的限制,也存在梯度下降消失的问题。因此,数据科学家和分析师应用LSTM来预测股价走势。本文采用标准普尔500指数、纽约证券交易所、印度证券交易所、印度证交所、纳斯达克和道琼斯工业平均指数等多种股票指数数据,将LSTM与SVR进行对比,进行实验分析。实验分析证明LSTM比SVR具有更好的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stock Price prediction using LSTM and SVR
Stock price movement is non-linear and complex. Several research works have been carried out to predict stock prices. Traditional approaches such as Linear Regression and Support Vector Regression were used but accuracy was not adequate. Researchers have tried to improve stock price prediction using ARIMA. Due to very high variations in stock prices, deep learning techniques are applied due to its proven accuracy in various analytics fields. Artificial Neural Network was deployed to predict stock prices but as stock prices are time-series based, recurrent neural network was applied to further improve prediction accuracy. In RNN, there is limitation of not able to store high dependencies and also vanishing gradient descent issue exists. Therefore, data scientists and analysts applied LSTM to predict stock price movement. In this paper, LSTM is compared with SVR using various stock index data such as S& P 500, NYSE, NSE, BSE, NASDAQ and Dow Jones industrial Average for experiment analysis. Experiment analysis proves that LSTM provides better accuracy as compared to SVR.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信