一个gpu友好的Skiplist算法

Nurit Moscovici, Nachshon Cohen, E. Petrank
{"title":"一个gpu友好的Skiplist算法","authors":"Nurit Moscovici, Nachshon Cohen, E. Petrank","doi":"10.1145/3018743.3019032","DOIUrl":null,"url":null,"abstract":"We propose a design for a fine-grained lock-based skiplist optimized for Graphics Processing Units (GPUs). While GPUs are often used to accelerate streaming parallel computations, it remains a significant challenge to efficiently offload concurrent computations with more complicated data-irregular access and fine-grained synchronization. Natural building blocks for such computations would be concurrent data structures, such as skiplists, which are widely used in general purpose computations. Our design utilizes array-based nodes which are accessed and updated by warp-cooperative functions, thus taking advantage of the fact that GPUs are most efficient when memory accesses are coalesced and execution divergence is minimized. The proposed design has been implemented, and measurements demonstrate improved performance of up to 11.6x over skiplist designs for the GPU existing today.","PeriodicalId":438103,"journal":{"name":"2017 26th International Conference on Parallel Architectures and Compilation Techniques (PACT)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"A GPU-Friendly Skiplist Algorithm\",\"authors\":\"Nurit Moscovici, Nachshon Cohen, E. Petrank\",\"doi\":\"10.1145/3018743.3019032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a design for a fine-grained lock-based skiplist optimized for Graphics Processing Units (GPUs). While GPUs are often used to accelerate streaming parallel computations, it remains a significant challenge to efficiently offload concurrent computations with more complicated data-irregular access and fine-grained synchronization. Natural building blocks for such computations would be concurrent data structures, such as skiplists, which are widely used in general purpose computations. Our design utilizes array-based nodes which are accessed and updated by warp-cooperative functions, thus taking advantage of the fact that GPUs are most efficient when memory accesses are coalesced and execution divergence is minimized. The proposed design has been implemented, and measurements demonstrate improved performance of up to 11.6x over skiplist designs for the GPU existing today.\",\"PeriodicalId\":438103,\"journal\":{\"name\":\"2017 26th International Conference on Parallel Architectures and Compilation Techniques (PACT)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 26th International Conference on Parallel Architectures and Compilation Techniques (PACT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3018743.3019032\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 26th International Conference on Parallel Architectures and Compilation Techniques (PACT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3018743.3019032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

我们提出了一种针对图形处理单元(gpu)优化的基于锁的细粒度跳过列表设计。虽然gpu经常用于加速流并行计算,但如何有效地卸载具有更复杂数据(不规则访问和细粒度同步)的并发计算仍然是一个重大挑战。这种计算的自然构建块将是并发数据结构,例如在通用计算中广泛使用的skiplist。我们的设计利用基于数组的节点,通过warp-cooperative函数访问和更新,从而利用gpu在内存访问合并和执行分歧最小化时效率最高的事实。提议的设计已经实施,测量表明,与目前现有的GPU跳过列表设计相比,性能提高了11.6倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A GPU-Friendly Skiplist Algorithm
We propose a design for a fine-grained lock-based skiplist optimized for Graphics Processing Units (GPUs). While GPUs are often used to accelerate streaming parallel computations, it remains a significant challenge to efficiently offload concurrent computations with more complicated data-irregular access and fine-grained synchronization. Natural building blocks for such computations would be concurrent data structures, such as skiplists, which are widely used in general purpose computations. Our design utilizes array-based nodes which are accessed and updated by warp-cooperative functions, thus taking advantage of the fact that GPUs are most efficient when memory accesses are coalesced and execution divergence is minimized. The proposed design has been implemented, and measurements demonstrate improved performance of up to 11.6x over skiplist designs for the GPU existing today.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信