交易数据的顺序响应GARCH模型:预测练习

S. Dimitrakopoulos, M. Tsionas
{"title":"交易数据的顺序响应GARCH模型:预测练习","authors":"S. Dimitrakopoulos, M. Tsionas","doi":"10.2139/ssrn.3210078","DOIUrl":null,"url":null,"abstract":"We use numerous high-frequency transaction data sets to evaluate the forecasting performances of several dynamic ordinal-response time series models with generalized autoregressive conditional heteroscedasticity (GARCH). The specifications account for three components: leverage effects, in-mean effects and moving average error terms. We estimate the model parameters by developing Markov chain Monte Carlo algorithms. Our empirical analysis shows that the proposed ordinal-response GARCH models achieve better point and density forecasts than standard benchmarks.","PeriodicalId":384078,"journal":{"name":"ERN: Other Econometrics: Data Collection & Data Estimation Methodology (Topic)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Ordinal-Response GARCH Models for Transaction Data: A Forecasting Exercise\",\"authors\":\"S. Dimitrakopoulos, M. Tsionas\",\"doi\":\"10.2139/ssrn.3210078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We use numerous high-frequency transaction data sets to evaluate the forecasting performances of several dynamic ordinal-response time series models with generalized autoregressive conditional heteroscedasticity (GARCH). The specifications account for three components: leverage effects, in-mean effects and moving average error terms. We estimate the model parameters by developing Markov chain Monte Carlo algorithms. Our empirical analysis shows that the proposed ordinal-response GARCH models achieve better point and density forecasts than standard benchmarks.\",\"PeriodicalId\":384078,\"journal\":{\"name\":\"ERN: Other Econometrics: Data Collection & Data Estimation Methodology (Topic)\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Other Econometrics: Data Collection & Data Estimation Methodology (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3210078\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Other Econometrics: Data Collection & Data Estimation Methodology (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3210078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文利用大量高频交易数据集,对几种具有广义自回归条件异方差(GARCH)的动态有序响应时间序列模型的预测性能进行了评价。该规范考虑了三个组成部分:杠杆效应、均值效应和移动平均误差项。采用马尔可夫链蒙特卡罗算法估计模型参数。我们的实证分析表明,所提出的有序响应GARCH模型比标准基准具有更好的点和密度预测效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ordinal-Response GARCH Models for Transaction Data: A Forecasting Exercise
We use numerous high-frequency transaction data sets to evaluate the forecasting performances of several dynamic ordinal-response time series models with generalized autoregressive conditional heteroscedasticity (GARCH). The specifications account for three components: leverage effects, in-mean effects and moving average error terms. We estimate the model parameters by developing Markov chain Monte Carlo algorithms. Our empirical analysis shows that the proposed ordinal-response GARCH models achieve better point and density forecasts than standard benchmarks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信