{"title":"基于Wasserstein GAN的帧级语音增强","authors":"Peng Chuan, Tian Lan, M. Li, Sen Li, Qiao Liu","doi":"10.1117/12.2559619","DOIUrl":null,"url":null,"abstract":"Speech enhancement is a challenging and critical task in the speech processing research area. In this paper, we propose a novel speech enhancement model based on Wasserstein generative adversarial networks, called WSEM. The proposed model operates on frame-level speech segments by using an adjacent frames extension mechanism, to enforce the mapping from noisy speech to the clean target, which makes it distinctly different from other related GAN-based models. We compare the performance of WSEM with related works on benchmark datasets under different signal-to-noise (SNR) conditions, experimental results show that WSEM performs comparable to the state-of-the-art approaches in all the tests, and it performs especially well in low SNR environments.","PeriodicalId":415097,"journal":{"name":"International Conference on Signal Processing Systems","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Frame-level speech enhancement based on Wasserstein GAN\",\"authors\":\"Peng Chuan, Tian Lan, M. Li, Sen Li, Qiao Liu\",\"doi\":\"10.1117/12.2559619\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Speech enhancement is a challenging and critical task in the speech processing research area. In this paper, we propose a novel speech enhancement model based on Wasserstein generative adversarial networks, called WSEM. The proposed model operates on frame-level speech segments by using an adjacent frames extension mechanism, to enforce the mapping from noisy speech to the clean target, which makes it distinctly different from other related GAN-based models. We compare the performance of WSEM with related works on benchmark datasets under different signal-to-noise (SNR) conditions, experimental results show that WSEM performs comparable to the state-of-the-art approaches in all the tests, and it performs especially well in low SNR environments.\",\"PeriodicalId\":415097,\"journal\":{\"name\":\"International Conference on Signal Processing Systems\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Signal Processing Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2559619\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Signal Processing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2559619","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Frame-level speech enhancement based on Wasserstein GAN
Speech enhancement is a challenging and critical task in the speech processing research area. In this paper, we propose a novel speech enhancement model based on Wasserstein generative adversarial networks, called WSEM. The proposed model operates on frame-level speech segments by using an adjacent frames extension mechanism, to enforce the mapping from noisy speech to the clean target, which makes it distinctly different from other related GAN-based models. We compare the performance of WSEM with related works on benchmark datasets under different signal-to-noise (SNR) conditions, experimental results show that WSEM performs comparable to the state-of-the-art approaches in all the tests, and it performs especially well in low SNR environments.