基于概率图谱的低剂量CT图像重建方法

Mona Selim, H. Kudo, E. Rashed
{"title":"基于概率图谱的低剂量CT图像重建方法","authors":"Mona Selim, H. Kudo, E. Rashed","doi":"10.1109/NSSMIC.2015.7582014","DOIUrl":null,"url":null,"abstract":"This work investigates the problem of image reconstruction from low-dose x-ray computed tomography (CT). Statistical iterative reconstruction is known to provide higher image quality due to the ability to incorporate prior knowledge to the reconstruction method and accurately model the photon statistics. In this paper, we develop a statistical reconstruction method using prior knowledge extracted from probabilistic atlas. First, we use a set of CT images previously scanned of various patients to generate a probabilistic atlas using Gaussian mixture model (GMM). Then, expectation maximization (EM) clustering algorithm is used to estimate the mixture parameters. Probabilistic atlas and mixture model parameters are then used to formulate the image reconstruction cost function. By merging the atlas information and smoothing penalty into the reconstruction procedure, image quality has been remarkably improved.","PeriodicalId":106811,"journal":{"name":"2015 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low-dose CT image reconstruction method with probabilistic atlas prior\",\"authors\":\"Mona Selim, H. Kudo, E. Rashed\",\"doi\":\"10.1109/NSSMIC.2015.7582014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work investigates the problem of image reconstruction from low-dose x-ray computed tomography (CT). Statistical iterative reconstruction is known to provide higher image quality due to the ability to incorporate prior knowledge to the reconstruction method and accurately model the photon statistics. In this paper, we develop a statistical reconstruction method using prior knowledge extracted from probabilistic atlas. First, we use a set of CT images previously scanned of various patients to generate a probabilistic atlas using Gaussian mixture model (GMM). Then, expectation maximization (EM) clustering algorithm is used to estimate the mixture parameters. Probabilistic atlas and mixture model parameters are then used to formulate the image reconstruction cost function. By merging the atlas information and smoothing penalty into the reconstruction procedure, image quality has been remarkably improved.\",\"PeriodicalId\":106811,\"journal\":{\"name\":\"2015 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NSSMIC.2015.7582014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NSSMIC.2015.7582014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了低剂量x射线计算机断层扫描(CT)图像重建问题。统计迭代重建可以提供更高的图像质量,因为它能够将先验知识纳入重建方法并准确地模拟光子统计。本文提出了一种利用概率图谱中提取的先验知识进行统计重构的方法。首先,我们使用一组先前扫描的不同患者的CT图像,使用高斯混合模型(GMM)生成概率图谱。然后,采用期望最大化聚类算法对混合参数进行估计。然后利用概率图谱和混合模型参数来确定图像重建的代价函数。通过将地图集信息和平滑惩罚融合到重建过程中,图像质量得到了显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Low-dose CT image reconstruction method with probabilistic atlas prior
This work investigates the problem of image reconstruction from low-dose x-ray computed tomography (CT). Statistical iterative reconstruction is known to provide higher image quality due to the ability to incorporate prior knowledge to the reconstruction method and accurately model the photon statistics. In this paper, we develop a statistical reconstruction method using prior knowledge extracted from probabilistic atlas. First, we use a set of CT images previously scanned of various patients to generate a probabilistic atlas using Gaussian mixture model (GMM). Then, expectation maximization (EM) clustering algorithm is used to estimate the mixture parameters. Probabilistic atlas and mixture model parameters are then used to formulate the image reconstruction cost function. By merging the atlas information and smoothing penalty into the reconstruction procedure, image quality has been remarkably improved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信