{"title":"使用离群值检测方法和拟合优度检验识别混合Copula成分","authors":"Gregor N. F. Weiß","doi":"10.2139/ssrn.1927881","DOIUrl":null,"url":null,"abstract":"This paper proposes the use of outlier detection methods from robust statistics and copula goodness-of-fit tests to identify components of mixture copulas. We first consider simulated data samples in which the true dependence structure is given by a mixture of two parametric copulas: one copula that is presumed to represent the true dependence structure and one disturbing copula. The Monte Carlo simulations show that the goodness-of-fit tests we consider lose significantly in power when applied to mixtures of copulas with different tail dependence. Several goodness-of-fit tests are shown to hold their nominal level when multivariate outliers are excluded, although this improvement comes at the price of a further loss in the tests' power. The usefulness of excluding outliers in copula goodness-of-fit testing is exemplified in an empirical risk management application.","PeriodicalId":431629,"journal":{"name":"Econometrics: Applied Econometric Modeling in Financial Economics eJournal","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Identifying Mixture Copula Components Using Outlier Detection Methods and Goodness-of-Fit Tests\",\"authors\":\"Gregor N. F. Weiß\",\"doi\":\"10.2139/ssrn.1927881\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes the use of outlier detection methods from robust statistics and copula goodness-of-fit tests to identify components of mixture copulas. We first consider simulated data samples in which the true dependence structure is given by a mixture of two parametric copulas: one copula that is presumed to represent the true dependence structure and one disturbing copula. The Monte Carlo simulations show that the goodness-of-fit tests we consider lose significantly in power when applied to mixtures of copulas with different tail dependence. Several goodness-of-fit tests are shown to hold their nominal level when multivariate outliers are excluded, although this improvement comes at the price of a further loss in the tests' power. The usefulness of excluding outliers in copula goodness-of-fit testing is exemplified in an empirical risk management application.\",\"PeriodicalId\":431629,\"journal\":{\"name\":\"Econometrics: Applied Econometric Modeling in Financial Economics eJournal\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Econometrics: Applied Econometric Modeling in Financial Economics eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.1927881\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometrics: Applied Econometric Modeling in Financial Economics eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.1927881","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Identifying Mixture Copula Components Using Outlier Detection Methods and Goodness-of-Fit Tests
This paper proposes the use of outlier detection methods from robust statistics and copula goodness-of-fit tests to identify components of mixture copulas. We first consider simulated data samples in which the true dependence structure is given by a mixture of two parametric copulas: one copula that is presumed to represent the true dependence structure and one disturbing copula. The Monte Carlo simulations show that the goodness-of-fit tests we consider lose significantly in power when applied to mixtures of copulas with different tail dependence. Several goodness-of-fit tests are shown to hold their nominal level when multivariate outliers are excluded, although this improvement comes at the price of a further loss in the tests' power. The usefulness of excluding outliers in copula goodness-of-fit testing is exemplified in an empirical risk management application.