使用离群值检测方法和拟合优度检验识别混合Copula成分

Gregor N. F. Weiß
{"title":"使用离群值检测方法和拟合优度检验识别混合Copula成分","authors":"Gregor N. F. Weiß","doi":"10.2139/ssrn.1927881","DOIUrl":null,"url":null,"abstract":"This paper proposes the use of outlier detection methods from robust statistics and copula goodness-of-fit tests to identify components of mixture copulas. We first consider simulated data samples in which the true dependence structure is given by a mixture of two parametric copulas: one copula that is presumed to represent the true dependence structure and one disturbing copula. The Monte Carlo simulations show that the goodness-of-fit tests we consider lose significantly in power when applied to mixtures of copulas with different tail dependence. Several goodness-of-fit tests are shown to hold their nominal level when multivariate outliers are excluded, although this improvement comes at the price of a further loss in the tests' power. The usefulness of excluding outliers in copula goodness-of-fit testing is exemplified in an empirical risk management application.","PeriodicalId":431629,"journal":{"name":"Econometrics: Applied Econometric Modeling in Financial Economics eJournal","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Identifying Mixture Copula Components Using Outlier Detection Methods and Goodness-of-Fit Tests\",\"authors\":\"Gregor N. F. Weiß\",\"doi\":\"10.2139/ssrn.1927881\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes the use of outlier detection methods from robust statistics and copula goodness-of-fit tests to identify components of mixture copulas. We first consider simulated data samples in which the true dependence structure is given by a mixture of two parametric copulas: one copula that is presumed to represent the true dependence structure and one disturbing copula. The Monte Carlo simulations show that the goodness-of-fit tests we consider lose significantly in power when applied to mixtures of copulas with different tail dependence. Several goodness-of-fit tests are shown to hold their nominal level when multivariate outliers are excluded, although this improvement comes at the price of a further loss in the tests' power. The usefulness of excluding outliers in copula goodness-of-fit testing is exemplified in an empirical risk management application.\",\"PeriodicalId\":431629,\"journal\":{\"name\":\"Econometrics: Applied Econometric Modeling in Financial Economics eJournal\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Econometrics: Applied Econometric Modeling in Financial Economics eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.1927881\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometrics: Applied Econometric Modeling in Financial Economics eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.1927881","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了利用鲁棒统计的离群值检测方法和copula拟合优度检验来识别混合copula的成分。我们首先考虑的模拟数据样本中,真正的依赖结构是由两个参数联结的混合物给出的:一个被假定为代表真正的依赖结构的联结和一个干扰联结。蒙特卡罗模拟表明,我们所考虑的拟合优度测试在应用于具有不同尾依赖性的copuls混合物时功率显著下降。当排除多变量异常值时,几个拟合优度检验显示保持其名义水平,尽管这种改进是以进一步损失检验能力为代价的。排除异常值的有用性在copula的拟合优度检验是例证在经验风险管理应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identifying Mixture Copula Components Using Outlier Detection Methods and Goodness-of-Fit Tests
This paper proposes the use of outlier detection methods from robust statistics and copula goodness-of-fit tests to identify components of mixture copulas. We first consider simulated data samples in which the true dependence structure is given by a mixture of two parametric copulas: one copula that is presumed to represent the true dependence structure and one disturbing copula. The Monte Carlo simulations show that the goodness-of-fit tests we consider lose significantly in power when applied to mixtures of copulas with different tail dependence. Several goodness-of-fit tests are shown to hold their nominal level when multivariate outliers are excluded, although this improvement comes at the price of a further loss in the tests' power. The usefulness of excluding outliers in copula goodness-of-fit testing is exemplified in an empirical risk management application.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信