池化分类器集成的进化方法:性能评估

C. Stefano, A. D. Cioppa, A. Marcelli
{"title":"池化分类器集成的进化方法:性能评估","authors":"C. Stefano, A. D. Cioppa, A. Marcelli","doi":"10.1109/SOCPAR.2013.7054149","DOIUrl":null,"url":null,"abstract":"We introduce a multiple classifier system that incorporates an Evolutionary Algorithm for dynamically selecting the set of classifiers to be included in the pool. The proposed technique is applicable when the classifiers provide both the class assigned to the input sample and a measure of thereliability of the classification. For each sample, the experts selected for participating in the voting rule are those whose reliability is larger than a given threshold. There are as many thresholds as the number of classifiers by the number of classes. The problem of finding the values of the thresholds aimed at selecting the best set of classifier for each input sample has been reformulated as an optimization task, approached by using the Breeder Genetic Algorithm and the Differential Evolution. A set of experiments on three well-known and widely adopetd datasets have been designed and performed to compare the performance provided by the two competing approaches.","PeriodicalId":315126,"journal":{"name":"2013 International Conference on Soft Computing and Pattern Recognition (SoCPaR)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Evolutionary approaches for pooling classifier ensembles: Performance evaluation\",\"authors\":\"C. Stefano, A. D. Cioppa, A. Marcelli\",\"doi\":\"10.1109/SOCPAR.2013.7054149\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a multiple classifier system that incorporates an Evolutionary Algorithm for dynamically selecting the set of classifiers to be included in the pool. The proposed technique is applicable when the classifiers provide both the class assigned to the input sample and a measure of thereliability of the classification. For each sample, the experts selected for participating in the voting rule are those whose reliability is larger than a given threshold. There are as many thresholds as the number of classifiers by the number of classes. The problem of finding the values of the thresholds aimed at selecting the best set of classifier for each input sample has been reformulated as an optimization task, approached by using the Breeder Genetic Algorithm and the Differential Evolution. A set of experiments on three well-known and widely adopetd datasets have been designed and performed to compare the performance provided by the two competing approaches.\",\"PeriodicalId\":315126,\"journal\":{\"name\":\"2013 International Conference on Soft Computing and Pattern Recognition (SoCPaR)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Conference on Soft Computing and Pattern Recognition (SoCPaR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SOCPAR.2013.7054149\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Soft Computing and Pattern Recognition (SoCPaR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SOCPAR.2013.7054149","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们引入了一个包含进化算法的多分类器系统,用于动态选择要包含在池中的分类器集。当分类器提供分配给输入样本的类别和分类可靠性的度量时,所提出的技术是适用的。对于每个样本,选择参与投票规则的专家是那些可靠性大于给定阈值的专家。阈值的个数等于分类器的个数除以类的个数。为每个输入样本选择最佳分类器集而寻找阈值的问题已被重新表述为优化任务,通过使用育种遗传算法和差分进化来解决。在三个众所周知且广泛采用的数据集上设计并执行了一组实验,以比较两种竞争方法提供的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evolutionary approaches for pooling classifier ensembles: Performance evaluation
We introduce a multiple classifier system that incorporates an Evolutionary Algorithm for dynamically selecting the set of classifiers to be included in the pool. The proposed technique is applicable when the classifiers provide both the class assigned to the input sample and a measure of thereliability of the classification. For each sample, the experts selected for participating in the voting rule are those whose reliability is larger than a given threshold. There are as many thresholds as the number of classifiers by the number of classes. The problem of finding the values of the thresholds aimed at selecting the best set of classifier for each input sample has been reformulated as an optimization task, approached by using the Breeder Genetic Algorithm and the Differential Evolution. A set of experiments on three well-known and widely adopetd datasets have been designed and performed to compare the performance provided by the two competing approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信