非局部意味着使用自适应核去噪

A. Tahmouresi, S. Saryazdi, S. Seydnejad
{"title":"非局部意味着使用自适应核去噪","authors":"A. Tahmouresi, S. Saryazdi, S. Seydnejad","doi":"10.1109/IRANIANCEE.2012.6292584","DOIUrl":null,"url":null,"abstract":"Non-local means algorithm is one of the powerful image denoising methods. Maintaining noise near edges and textural parts of a noisy image, is one of the main drawbacks of NLM. In this paper we introduce an adaptive kernel derived from image structure to remove maintained noise. Experimental results show superiority of our algorithm in comparison with original NLM as well as a method based on shape adaptive patches.","PeriodicalId":308726,"journal":{"name":"20th Iranian Conference on Electrical Engineering (ICEE2012)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Non-local means denoising using an adaptive kernel\",\"authors\":\"A. Tahmouresi, S. Saryazdi, S. Seydnejad\",\"doi\":\"10.1109/IRANIANCEE.2012.6292584\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Non-local means algorithm is one of the powerful image denoising methods. Maintaining noise near edges and textural parts of a noisy image, is one of the main drawbacks of NLM. In this paper we introduce an adaptive kernel derived from image structure to remove maintained noise. Experimental results show superiority of our algorithm in comparison with original NLM as well as a method based on shape adaptive patches.\",\"PeriodicalId\":308726,\"journal\":{\"name\":\"20th Iranian Conference on Electrical Engineering (ICEE2012)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"20th Iranian Conference on Electrical Engineering (ICEE2012)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRANIANCEE.2012.6292584\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"20th Iranian Conference on Electrical Engineering (ICEE2012)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRANIANCEE.2012.6292584","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

非局部均值算法是一种功能强大的图像去噪方法。在噪声图像的边缘和纹理部分附近保持噪声是NLM的主要缺点之一。本文引入了一种基于图像结构的自适应核函数,用于去除图像中的残留噪声。实验结果表明,该算法与原始NLM和基于形状自适应补丁的方法相比具有优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-local means denoising using an adaptive kernel
Non-local means algorithm is one of the powerful image denoising methods. Maintaining noise near edges and textural parts of a noisy image, is one of the main drawbacks of NLM. In this paper we introduce an adaptive kernel derived from image structure to remove maintained noise. Experimental results show superiority of our algorithm in comparison with original NLM as well as a method based on shape adaptive patches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信