{"title":"自相似条件下置信带的自适应界","authors":"Timothy B. Armstrong","doi":"10.2139/ssrn.3423277","DOIUrl":null,"url":null,"abstract":"We derive bounds on the scope for a confidence band to adapt to the unknown regularity of a nonparametric function that is observed with noise, such as a regression function or density, under the self-similarity condition proposed by Gine and Nickl (2010). We find that adaptation can only be achieved up to a term that depends on the choice of the constant used to define self-similarity, and that this term becomes arbitrarily large for conservative choices of the self-similarity constant. We construct a confidence band that achieves this bound, up to a constant term that does not depend on the self-similarity constant. Our results suggest that care must be taken in choosing and interpreting the constant that defines self-similarity, since the dependence of adaptive confidence bands on this constant cannot be made to disappear asymptotically.","PeriodicalId":260073,"journal":{"name":"Mathematics eJournal","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Adaptation Bounds for Confidence Bands under Self-Similarity\",\"authors\":\"Timothy B. Armstrong\",\"doi\":\"10.2139/ssrn.3423277\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We derive bounds on the scope for a confidence band to adapt to the unknown regularity of a nonparametric function that is observed with noise, such as a regression function or density, under the self-similarity condition proposed by Gine and Nickl (2010). We find that adaptation can only be achieved up to a term that depends on the choice of the constant used to define self-similarity, and that this term becomes arbitrarily large for conservative choices of the self-similarity constant. We construct a confidence band that achieves this bound, up to a constant term that does not depend on the self-similarity constant. Our results suggest that care must be taken in choosing and interpreting the constant that defines self-similarity, since the dependence of adaptive confidence bands on this constant cannot be made to disappear asymptotically.\",\"PeriodicalId\":260073,\"journal\":{\"name\":\"Mathematics eJournal\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3423277\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3423277","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Adaptation Bounds for Confidence Bands under Self-Similarity
We derive bounds on the scope for a confidence band to adapt to the unknown regularity of a nonparametric function that is observed with noise, such as a regression function or density, under the self-similarity condition proposed by Gine and Nickl (2010). We find that adaptation can only be achieved up to a term that depends on the choice of the constant used to define self-similarity, and that this term becomes arbitrarily large for conservative choices of the self-similarity constant. We construct a confidence band that achieves this bound, up to a constant term that does not depend on the self-similarity constant. Our results suggest that care must be taken in choosing and interpreting the constant that defines self-similarity, since the dependence of adaptive confidence bands on this constant cannot be made to disappear asymptotically.