基于滑模观测器的IM驱动器改进预测电流控制

Haitao Yang, Yongchang Zhang, Peng Huang
{"title":"基于滑模观测器的IM驱动器改进预测电流控制","authors":"Haitao Yang, Yongchang Zhang, Peng Huang","doi":"10.1109/PRECEDE.2019.8753274","DOIUrl":null,"url":null,"abstract":"In the conventional finite control set-model predictive current control (FCS-MPCC) method, both stator current and flux-linkage vector need to be computed for delay compensation and coordinate transformation. And, the conventional PCC is sensitive to rotor parameter mismatches. Additionally, the performance of FCS-MPCC degrades during speed variation when low-pass filter is applied to attenuate noise in speed measurement. In this paper, a reduced-order sliding-mode current observer (RSCO) is designed, which can predict stator current at the next sampling instant while simultaneously estimating the back electromotive force. With the help of RSCO, current prediction and coordinate transformation can be achieved without calculation of flux-linkage vector, which features simplicity in practical application. Additionally, robustness against parameter mismatch is significantly improved due to the feedback of current estimation error. Simulation and experimental results are presented to validate effectiveness of the proposed method.","PeriodicalId":227885,"journal":{"name":"2019 IEEE International Symposium on Predictive Control of Electrical Drives and Power Electronics (PRECEDE)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Improved Predictive Current Control of IM Drives Based on a Sliding Mode Observer\",\"authors\":\"Haitao Yang, Yongchang Zhang, Peng Huang\",\"doi\":\"10.1109/PRECEDE.2019.8753274\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the conventional finite control set-model predictive current control (FCS-MPCC) method, both stator current and flux-linkage vector need to be computed for delay compensation and coordinate transformation. And, the conventional PCC is sensitive to rotor parameter mismatches. Additionally, the performance of FCS-MPCC degrades during speed variation when low-pass filter is applied to attenuate noise in speed measurement. In this paper, a reduced-order sliding-mode current observer (RSCO) is designed, which can predict stator current at the next sampling instant while simultaneously estimating the back electromotive force. With the help of RSCO, current prediction and coordinate transformation can be achieved without calculation of flux-linkage vector, which features simplicity in practical application. Additionally, robustness against parameter mismatch is significantly improved due to the feedback of current estimation error. Simulation and experimental results are presented to validate effectiveness of the proposed method.\",\"PeriodicalId\":227885,\"journal\":{\"name\":\"2019 IEEE International Symposium on Predictive Control of Electrical Drives and Power Electronics (PRECEDE)\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Symposium on Predictive Control of Electrical Drives and Power Electronics (PRECEDE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PRECEDE.2019.8753274\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Symposium on Predictive Control of Electrical Drives and Power Electronics (PRECEDE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PRECEDE.2019.8753274","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在传统的有限控制集模型预测电流控制(FCS-MPCC)方法中,需要同时计算定子电流和磁链矢量进行延迟补偿和坐标变换。传统的PCC对转子参数失配比较敏感。此外,在转速测量中使用低通滤波器衰减噪声会导致FCS-MPCC在转速变化过程中的性能下降。本文设计了一种降阶滑模电流观测器(RSCO),该观测器可以在估计反电动势的同时预测下一个采样时刻的定子电流。利用RSCO可以在不计算磁链矢量的情况下进行电流预测和坐标变换,具有实际应用简单的特点。此外,由于电流估计误差的反馈,大大提高了对参数失配的鲁棒性。仿真和实验结果验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improved Predictive Current Control of IM Drives Based on a Sliding Mode Observer
In the conventional finite control set-model predictive current control (FCS-MPCC) method, both stator current and flux-linkage vector need to be computed for delay compensation and coordinate transformation. And, the conventional PCC is sensitive to rotor parameter mismatches. Additionally, the performance of FCS-MPCC degrades during speed variation when low-pass filter is applied to attenuate noise in speed measurement. In this paper, a reduced-order sliding-mode current observer (RSCO) is designed, which can predict stator current at the next sampling instant while simultaneously estimating the back electromotive force. With the help of RSCO, current prediction and coordinate transformation can be achieved without calculation of flux-linkage vector, which features simplicity in practical application. Additionally, robustness against parameter mismatch is significantly improved due to the feedback of current estimation error. Simulation and experimental results are presented to validate effectiveness of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信