梯形箱梁底部法兰纵向加强筋刚度要求

Hawraa S. Malik, D. Jawad
{"title":"梯形箱梁底部法兰纵向加强筋刚度要求","authors":"Hawraa S. Malik, D. Jawad","doi":"10.33971/bjes.22.1.12","DOIUrl":null,"url":null,"abstract":"The reason for the widespread use of steel box girders is that they have high structural efficiency due to the high bending, high torsional stiffness and rapid erection. For bottom flange of the girders, the buckling behavior during production and erection due to compression strength can be a problem. The compression plate with longitudinal stiffeners typically renders an economic. The optimal design of longitudinal stiffeners is discussed. The results are based on 3-D FEA (ANSYS19.2) of many stiffened compression bottom flange models, the moment of inertia requirement of bottom flange longitudinal stiffener is investigated by studying the effect of many parameters as longitudinal stiffeners numbers, stiffener sections, plate aspect ratio and compression flange thickness. Also, the stiffeners effect on the compression panel plate stresses were studied by modeling girder with and without longitudinal stiffeners. The finite element method is useful as they can be used to study the plate with stiffeners in an economical way, and we don’t need experimental and laboratory tests.","PeriodicalId":150774,"journal":{"name":"Basrah journal for engineering science","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stiffness Requirements for Longitudinal Stiffeners of Trapezoidal Box Girder Bottom Flanges\",\"authors\":\"Hawraa S. Malik, D. Jawad\",\"doi\":\"10.33971/bjes.22.1.12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The reason for the widespread use of steel box girders is that they have high structural efficiency due to the high bending, high torsional stiffness and rapid erection. For bottom flange of the girders, the buckling behavior during production and erection due to compression strength can be a problem. The compression plate with longitudinal stiffeners typically renders an economic. The optimal design of longitudinal stiffeners is discussed. The results are based on 3-D FEA (ANSYS19.2) of many stiffened compression bottom flange models, the moment of inertia requirement of bottom flange longitudinal stiffener is investigated by studying the effect of many parameters as longitudinal stiffeners numbers, stiffener sections, plate aspect ratio and compression flange thickness. Also, the stiffeners effect on the compression panel plate stresses were studied by modeling girder with and without longitudinal stiffeners. The finite element method is useful as they can be used to study the plate with stiffeners in an economical way, and we don’t need experimental and laboratory tests.\",\"PeriodicalId\":150774,\"journal\":{\"name\":\"Basrah journal for engineering science\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Basrah journal for engineering science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33971/bjes.22.1.12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Basrah journal for engineering science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33971/bjes.22.1.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

钢箱梁广泛使用的原因是由于其高弯曲,高扭转刚度和快速安装而具有高结构效率。对于梁的底部法兰,在生产和安装过程中,由于抗压强度的屈曲行为可能是一个问题。具有纵向加强筋的压板通常具有经济性。讨论了纵向加强筋的优化设计。基于ANSYS19.2三维有限元分析软件,研究了纵向加劲肋数、加劲肋截面、板宽高比、压缩翼缘厚度等参数对底部翼缘纵向加劲肋转动惯量的影响。通过对加劲梁和不加劲梁的模拟,研究了加劲梁对受压板应力的影响。有限元方法是一种实用的方法,因为它可以经济地研究加筋板,而不需要进行实验和实验室测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stiffness Requirements for Longitudinal Stiffeners of Trapezoidal Box Girder Bottom Flanges
The reason for the widespread use of steel box girders is that they have high structural efficiency due to the high bending, high torsional stiffness and rapid erection. For bottom flange of the girders, the buckling behavior during production and erection due to compression strength can be a problem. The compression plate with longitudinal stiffeners typically renders an economic. The optimal design of longitudinal stiffeners is discussed. The results are based on 3-D FEA (ANSYS19.2) of many stiffened compression bottom flange models, the moment of inertia requirement of bottom flange longitudinal stiffener is investigated by studying the effect of many parameters as longitudinal stiffeners numbers, stiffener sections, plate aspect ratio and compression flange thickness. Also, the stiffeners effect on the compression panel plate stresses were studied by modeling girder with and without longitudinal stiffeners. The finite element method is useful as they can be used to study the plate with stiffeners in an economical way, and we don’t need experimental and laboratory tests.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信