Lu Zhang, H. Tian, S. Dong, Dong Yang, Xiaoguang Li, J. Li, Jianqi Li, Huaixin Yang
{"title":"室温多铁Bi 4.2K 0.8Fe 2O +δ调制结构的直接观察","authors":"Lu Zhang, H. Tian, S. Dong, Dong Yang, Xiaoguang Li, J. Li, Jianqi Li, Huaixin Yang","doi":"10.2139/ssrn.3708675","DOIUrl":null,"url":null,"abstract":"Abstract The coexistence and coupling between alternatively stacked layers with different functional properties often give rise to exotic physical phenomena, such as high-temperature superconductivity, multiferroic behavior, and giant thermoelectric performance, which are tightly linked with the intrinsic microstructures. Here we unambiguously uncover the structural modulations in multiferroic Bi4.2K0.8Fe2O9+δ (BKFO) nanobelts with a magnetoelectric–dielectric superlattice by scanning transmission electron microscopy (STEM). The octahedrons in the perovskite layers are identified as FeO6 and the ordered arrangements of the Bi and K cations are clearly determined. Quantitative measurements of the positions of the Bi columns indicate that the displacive modulations can be decomposed into a transverse wave and a longitudinal wave, whose amplitudes and phases are layer-dependent. This study may help to understand and optimize the magnetoelectric coupling effect in BKFO.","PeriodicalId":237724,"journal":{"name":"EngRN: Materials Chemistry (Topic)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Direct Observation of Modulation Structure in Room Temperature Multiferroic Bi 4.2K 0.8Fe 2O 9+δ\",\"authors\":\"Lu Zhang, H. Tian, S. Dong, Dong Yang, Xiaoguang Li, J. Li, Jianqi Li, Huaixin Yang\",\"doi\":\"10.2139/ssrn.3708675\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The coexistence and coupling between alternatively stacked layers with different functional properties often give rise to exotic physical phenomena, such as high-temperature superconductivity, multiferroic behavior, and giant thermoelectric performance, which are tightly linked with the intrinsic microstructures. Here we unambiguously uncover the structural modulations in multiferroic Bi4.2K0.8Fe2O9+δ (BKFO) nanobelts with a magnetoelectric–dielectric superlattice by scanning transmission electron microscopy (STEM). The octahedrons in the perovskite layers are identified as FeO6 and the ordered arrangements of the Bi and K cations are clearly determined. Quantitative measurements of the positions of the Bi columns indicate that the displacive modulations can be decomposed into a transverse wave and a longitudinal wave, whose amplitudes and phases are layer-dependent. This study may help to understand and optimize the magnetoelectric coupling effect in BKFO.\",\"PeriodicalId\":237724,\"journal\":{\"name\":\"EngRN: Materials Chemistry (Topic)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EngRN: Materials Chemistry (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3708675\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EngRN: Materials Chemistry (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3708675","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Direct Observation of Modulation Structure in Room Temperature Multiferroic Bi 4.2K 0.8Fe 2O 9+δ
Abstract The coexistence and coupling between alternatively stacked layers with different functional properties often give rise to exotic physical phenomena, such as high-temperature superconductivity, multiferroic behavior, and giant thermoelectric performance, which are tightly linked with the intrinsic microstructures. Here we unambiguously uncover the structural modulations in multiferroic Bi4.2K0.8Fe2O9+δ (BKFO) nanobelts with a magnetoelectric–dielectric superlattice by scanning transmission electron microscopy (STEM). The octahedrons in the perovskite layers are identified as FeO6 and the ordered arrangements of the Bi and K cations are clearly determined. Quantitative measurements of the positions of the Bi columns indicate that the displacive modulations can be decomposed into a transverse wave and a longitudinal wave, whose amplitudes and phases are layer-dependent. This study may help to understand and optimize the magnetoelectric coupling effect in BKFO.