发现长最大频率模式

Shu-Jing Lin, Yi-Chung Chen, Don-Lin Yang, Jungpin Wu
{"title":"发现长最大频率模式","authors":"Shu-Jing Lin, Yi-Chung Chen, Don-Lin Yang, Jungpin Wu","doi":"10.1109/ICACI.2016.7449817","DOIUrl":null,"url":null,"abstract":"Association rule mining, the most commonly used method for data mining, has numerous applications. Although many approaches that can find association rules have been developed, most utilize maximum frequent itemsets that are short. Existing methods fail to perform well in applications involving large amounts of data and incur longer itemsets. Apriori-like algorithms have this problem because they generate many candidate itemsets and spend considerable time scanning databases; that is, their processing method is bottom-up and layered. This paper solves this problem via a novel hybrid Multilevel-Search algorithm. The algorithm concurrently uses the bidirectional Pincer-Search and parameter prediction mechanism along with the bottom-up search of the Parameterised method to reduce the number of candidate itemsets and consequently, the number of database scans. Experimental results demonstrate that the proposed algorithm performs well, especially when the length of the maximum frequent itemsets are longer than or equal to eight. The concurrent approach of our multilevel algorithm results in faster execution time and improved efficiency.","PeriodicalId":211040,"journal":{"name":"2016 Eighth International Conference on Advanced Computational Intelligence (ICACI)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Discovering long maximal frequent pattern\",\"authors\":\"Shu-Jing Lin, Yi-Chung Chen, Don-Lin Yang, Jungpin Wu\",\"doi\":\"10.1109/ICACI.2016.7449817\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Association rule mining, the most commonly used method for data mining, has numerous applications. Although many approaches that can find association rules have been developed, most utilize maximum frequent itemsets that are short. Existing methods fail to perform well in applications involving large amounts of data and incur longer itemsets. Apriori-like algorithms have this problem because they generate many candidate itemsets and spend considerable time scanning databases; that is, their processing method is bottom-up and layered. This paper solves this problem via a novel hybrid Multilevel-Search algorithm. The algorithm concurrently uses the bidirectional Pincer-Search and parameter prediction mechanism along with the bottom-up search of the Parameterised method to reduce the number of candidate itemsets and consequently, the number of database scans. Experimental results demonstrate that the proposed algorithm performs well, especially when the length of the maximum frequent itemsets are longer than or equal to eight. The concurrent approach of our multilevel algorithm results in faster execution time and improved efficiency.\",\"PeriodicalId\":211040,\"journal\":{\"name\":\"2016 Eighth International Conference on Advanced Computational Intelligence (ICACI)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 Eighth International Conference on Advanced Computational Intelligence (ICACI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICACI.2016.7449817\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Eighth International Conference on Advanced Computational Intelligence (ICACI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACI.2016.7449817","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

关联规则挖掘是数据挖掘中最常用的方法,有许多应用。尽管已经开发了许多可以查找关联规则的方法,但大多数方法都利用了较短的最大频繁项集。现有方法在涉及大量数据的应用程序中表现不佳,并且会产生较长的项集。类apriori算法存在这个问题,因为它们生成许多候选项集,并且花费大量时间扫描数据库;也就是说,它们的处理方法是自下而上、分层的。本文通过一种新的混合多级搜索算法解决了这一问题。该算法同时使用双向钳式搜索和参数预测机制以及参数化方法的自底向上搜索来减少候选项集的数量,从而减少数据库扫描的次数。实验结果表明,该算法在最大频繁项集长度大于等于8的情况下具有良好的性能。我们的多层算法并行化的方法使得执行速度更快,效率更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Discovering long maximal frequent pattern
Association rule mining, the most commonly used method for data mining, has numerous applications. Although many approaches that can find association rules have been developed, most utilize maximum frequent itemsets that are short. Existing methods fail to perform well in applications involving large amounts of data and incur longer itemsets. Apriori-like algorithms have this problem because they generate many candidate itemsets and spend considerable time scanning databases; that is, their processing method is bottom-up and layered. This paper solves this problem via a novel hybrid Multilevel-Search algorithm. The algorithm concurrently uses the bidirectional Pincer-Search and parameter prediction mechanism along with the bottom-up search of the Parameterised method to reduce the number of candidate itemsets and consequently, the number of database scans. Experimental results demonstrate that the proposed algorithm performs well, especially when the length of the maximum frequent itemsets are longer than or equal to eight. The concurrent approach of our multilevel algorithm results in faster execution time and improved efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信