移动机器人存在移动障碍物时的优化轨迹规划

C. Ko, K. Young, Yi-Hung Hsieh
{"title":"移动机器人存在移动障碍物时的优化轨迹规划","authors":"C. Ko, K. Young, Yi-Hung Hsieh","doi":"10.1109/ICMECH.2015.7083950","DOIUrl":null,"url":null,"abstract":"Navigation and obstacle avoidance are essential for mobile robots. In the dynamic environment, the obstacles may move with varying velocities. It is thus crucial to develop an effective scheme for moving obstacle avoidance. Motivated by this, in this paper, we propose such a scheme based on parametric trajectory planning. With the conditions for collision avoidance formulated as the constraints, a feasible collision-free trajectory is then derived by solving an unconstrained optimization problem. The corresponding control torques for robot governing is calculated using the dynamic model and derived trajectory, with the information about the obstacle not known a priori. Simulations are performed to demonstrate the efficiency of the proposed approach.","PeriodicalId":179621,"journal":{"name":"2015 IEEE International Conference on Mechatronics (ICM)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Optimized trajectory planning for mobile robot in the presence of moving obstacles\",\"authors\":\"C. Ko, K. Young, Yi-Hung Hsieh\",\"doi\":\"10.1109/ICMECH.2015.7083950\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Navigation and obstacle avoidance are essential for mobile robots. In the dynamic environment, the obstacles may move with varying velocities. It is thus crucial to develop an effective scheme for moving obstacle avoidance. Motivated by this, in this paper, we propose such a scheme based on parametric trajectory planning. With the conditions for collision avoidance formulated as the constraints, a feasible collision-free trajectory is then derived by solving an unconstrained optimization problem. The corresponding control torques for robot governing is calculated using the dynamic model and derived trajectory, with the information about the obstacle not known a priori. Simulations are performed to demonstrate the efficiency of the proposed approach.\",\"PeriodicalId\":179621,\"journal\":{\"name\":\"2015 IEEE International Conference on Mechatronics (ICM)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Mechatronics (ICM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMECH.2015.7083950\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Mechatronics (ICM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMECH.2015.7083950","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

导航和避障是移动机器人的基本功能。在动态环境中,障碍物可能以不同的速度移动。因此,开发一种有效的移动避障方案至关重要。基于此,本文提出了一种基于参数化轨迹规划的方案。以避免碰撞的条件为约束,通过求解无约束优化问题,推导出可行的无碰撞轨迹。在未知先验障碍物信息的情况下,利用动力学模型和导出的轨迹计算机器人的控制力矩。仿真结果验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimized trajectory planning for mobile robot in the presence of moving obstacles
Navigation and obstacle avoidance are essential for mobile robots. In the dynamic environment, the obstacles may move with varying velocities. It is thus crucial to develop an effective scheme for moving obstacle avoidance. Motivated by this, in this paper, we propose such a scheme based on parametric trajectory planning. With the conditions for collision avoidance formulated as the constraints, a feasible collision-free trajectory is then derived by solving an unconstrained optimization problem. The corresponding control torques for robot governing is calculated using the dynamic model and derived trajectory, with the information about the obstacle not known a priori. Simulations are performed to demonstrate the efficiency of the proposed approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信