分类法生成器:一个数据驱动和以用户为中心的工具,用于简化分类法构建

J. Hungerford, Yee Seng Chan, J. MacBride, Benjamin M. Gyori, Andrew Zupon, Zheng Tang, Egoitz Laparra, Haoling Qiu, Bonan Min, Yan Zverev, Caitlin Hilverman, M. Thomas, Walt Andrews, K. Alcock, Zeyu Zhang, Michael Reynolds, M. Surdeanu, Steven Bethard, Rebecca Sharp
{"title":"分类法生成器:一个数据驱动和以用户为中心的工具,用于简化分类法构建","authors":"J. Hungerford, Yee Seng Chan, J. MacBride, Benjamin M. Gyori, Andrew Zupon, Zheng Tang, Egoitz Laparra, Haoling Qiu, Bonan Min, Yan Zverev, Caitlin Hilverman, M. Thomas, Walt Andrews, K. Alcock, Zeyu Zhang, Michael Reynolds, M. Surdeanu, Steven Bethard, Rebecca Sharp","doi":"10.18653/v1/2022.hcinlp-1.1","DOIUrl":null,"url":null,"abstract":"An existing domain taxonomy for normalizing content is often assumed when discussing approaches to information extraction, yet often in real-world scenarios there is none.When one does exist, as the information needs shift, it must be continually extended. This is a slow and tedious task, and one which does not scale well.Here we propose an interactive tool that allows a taxonomy to be built or extended rapidly and with a human in the loop to control precision. We apply insights from text summarization and information extraction to reduce the search space dramatically, then leverage modern pretrained language models to perform contextualized clustering of the remaining concepts to yield candidate nodes for the user to review. We show this allows a user to consider as many as 200 taxonomy concept candidates an hour, to quickly build or extend a taxonomy to better fit information needs.","PeriodicalId":447138,"journal":{"name":"Proceedings of the Second Workshop on Bridging Human--Computer Interaction and Natural Language Processing","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Taxonomy Builder: a Data-driven and User-centric Tool for Streamlining Taxonomy Construction\",\"authors\":\"J. Hungerford, Yee Seng Chan, J. MacBride, Benjamin M. Gyori, Andrew Zupon, Zheng Tang, Egoitz Laparra, Haoling Qiu, Bonan Min, Yan Zverev, Caitlin Hilverman, M. Thomas, Walt Andrews, K. Alcock, Zeyu Zhang, Michael Reynolds, M. Surdeanu, Steven Bethard, Rebecca Sharp\",\"doi\":\"10.18653/v1/2022.hcinlp-1.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An existing domain taxonomy for normalizing content is often assumed when discussing approaches to information extraction, yet often in real-world scenarios there is none.When one does exist, as the information needs shift, it must be continually extended. This is a slow and tedious task, and one which does not scale well.Here we propose an interactive tool that allows a taxonomy to be built or extended rapidly and with a human in the loop to control precision. We apply insights from text summarization and information extraction to reduce the search space dramatically, then leverage modern pretrained language models to perform contextualized clustering of the remaining concepts to yield candidate nodes for the user to review. We show this allows a user to consider as many as 200 taxonomy concept candidates an hour, to quickly build or extend a taxonomy to better fit information needs.\",\"PeriodicalId\":447138,\"journal\":{\"name\":\"Proceedings of the Second Workshop on Bridging Human--Computer Interaction and Natural Language Processing\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Second Workshop on Bridging Human--Computer Interaction and Natural Language Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/2022.hcinlp-1.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Second Workshop on Bridging Human--Computer Interaction and Natural Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2022.hcinlp-1.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在讨论信息提取方法时,通常假设有用于规范化内容的现有域分类法,但在实际场景中通常没有。当一个确实存在时,随着信息需求的变化,它必须不断扩展。这是一项缓慢而乏味的任务,而且不能很好地扩展。在这里,我们提出了一个交互式工具,它允许快速构建或扩展分类法,并且在循环中有一个人来控制精度。我们应用文本摘要和信息提取的见解来显著减少搜索空间,然后利用现代预训练的语言模型对剩余的概念执行上下文化聚类,以产生候选节点供用户审查。我们展示了这允许用户在一小时内考虑多达200个分类法概念候选,以便快速构建或扩展分类法以更好地满足信息需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Taxonomy Builder: a Data-driven and User-centric Tool for Streamlining Taxonomy Construction
An existing domain taxonomy for normalizing content is often assumed when discussing approaches to information extraction, yet often in real-world scenarios there is none.When one does exist, as the information needs shift, it must be continually extended. This is a slow and tedious task, and one which does not scale well.Here we propose an interactive tool that allows a taxonomy to be built or extended rapidly and with a human in the loop to control precision. We apply insights from text summarization and information extraction to reduce the search space dramatically, then leverage modern pretrained language models to perform contextualized clustering of the remaining concepts to yield candidate nodes for the user to review. We show this allows a user to consider as many as 200 taxonomy concept candidates an hour, to quickly build or extend a taxonomy to better fit information needs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信