学习从局部视觉描述符抓取启示

L. Montesano, M. Lopes
{"title":"学习从局部视觉描述符抓取启示","authors":"L. Montesano, M. Lopes","doi":"10.1109/DEVLRN.2009.5175529","DOIUrl":null,"url":null,"abstract":"In this paper we study the learning of affordances through self-experimentation. We study the learning of local visual descriptors that anticipate the success of a given action executed upon an object. Consider, for instance, the case of grasping. Although graspable is a property of the whole object, the grasp action will only succeed if applied in the right part of the object. We propose an algorithm to learn local visual descriptors of good grasping points based on a set of trials performed by the robot. The method estimates the probability of a successful action (grasp) based on simple local features. Experimental results on a humanoid robot illustrate how our method is able to learn descriptors of good grasping points and to generalize to novel objects based on prior experience.","PeriodicalId":192225,"journal":{"name":"2009 IEEE 8th International Conference on Development and Learning","volume":"589 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"103","resultStr":"{\"title\":\"Learning grasping affordances from local visual descriptors\",\"authors\":\"L. Montesano, M. Lopes\",\"doi\":\"10.1109/DEVLRN.2009.5175529\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we study the learning of affordances through self-experimentation. We study the learning of local visual descriptors that anticipate the success of a given action executed upon an object. Consider, for instance, the case of grasping. Although graspable is a property of the whole object, the grasp action will only succeed if applied in the right part of the object. We propose an algorithm to learn local visual descriptors of good grasping points based on a set of trials performed by the robot. The method estimates the probability of a successful action (grasp) based on simple local features. Experimental results on a humanoid robot illustrate how our method is able to learn descriptors of good grasping points and to generalize to novel objects based on prior experience.\",\"PeriodicalId\":192225,\"journal\":{\"name\":\"2009 IEEE 8th International Conference on Development and Learning\",\"volume\":\"589 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"103\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE 8th International Conference on Development and Learning\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DEVLRN.2009.5175529\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE 8th International Conference on Development and Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DEVLRN.2009.5175529","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 103

摘要

本文通过自我实验的方法研究了可视性的学习。我们研究了局部视觉描述符的学习,这些描述符预测了在对象上执行的给定动作的成功。例如,考虑一下抓握的情况。虽然抓取是整个对象的属性,但抓取操作只有在对象的正确部分应用时才会成功。我们提出了一种基于机器人进行的一组试验来学习良好抓取点的局部视觉描述符的算法。该方法基于简单的局部特征估计成功动作(抓取)的概率。在一个人形机器人上的实验结果表明,我们的方法能够学习好的抓取点的描述符,并基于先前的经验推广到新的对象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning grasping affordances from local visual descriptors
In this paper we study the learning of affordances through self-experimentation. We study the learning of local visual descriptors that anticipate the success of a given action executed upon an object. Consider, for instance, the case of grasping. Although graspable is a property of the whole object, the grasp action will only succeed if applied in the right part of the object. We propose an algorithm to learn local visual descriptors of good grasping points based on a set of trials performed by the robot. The method estimates the probability of a successful action (grasp) based on simple local features. Experimental results on a humanoid robot illustrate how our method is able to learn descriptors of good grasping points and to generalize to novel objects based on prior experience.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信