A. Sikora, Fabian Sowieja, Sebastian E Jubin, Manuel Schappacher, Wacime Hadrich
{"title":"自动化物理测试平台(APTB 2.0):为物联网和工业4.0实现可靠、高效的无线通信网络测试","authors":"A. Sikora, Fabian Sowieja, Sebastian E Jubin, Manuel Schappacher, Wacime Hadrich","doi":"10.1109/INDIN51400.2023.10218143","DOIUrl":null,"url":null,"abstract":"Wireless communication networks are crucial for enabling megatrends like the Internet of Things (IoT) and Industry 4.0. However, testing these networks can be challenging due to the complex network topology and RF characteristics, requiring a multitude of scenarios to be tested. To address this challenge, the authors developed and extended an automated testbed called Automated Physical TestBed (APTB). This testbed provides the means to conduct controlled tests, analyze coexistence, emulate multiple propagation paths, and model dependable channel conditions. Additionally, the platform supports test automation to facilitate efficient and systematic experimentation. This paper describes the extended architecture, implementation, and performance evaluation of the APTB testbed. The APTB testbed provides a reliable and efficient solution for testing wireless communication networks under various scenarios. The implementation and performance verification of the testbed demonstrate its effectiveness and usefulness for researchers and industry practitioners.","PeriodicalId":174443,"journal":{"name":"2023 IEEE 21st International Conference on Industrial Informatics (INDIN)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automated Physical TestBeds (APTB 2.0): Enabling Reliable and Efficient Testing of Wireless Communication Networks for IoT and Industry 4.0\",\"authors\":\"A. Sikora, Fabian Sowieja, Sebastian E Jubin, Manuel Schappacher, Wacime Hadrich\",\"doi\":\"10.1109/INDIN51400.2023.10218143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wireless communication networks are crucial for enabling megatrends like the Internet of Things (IoT) and Industry 4.0. However, testing these networks can be challenging due to the complex network topology and RF characteristics, requiring a multitude of scenarios to be tested. To address this challenge, the authors developed and extended an automated testbed called Automated Physical TestBed (APTB). This testbed provides the means to conduct controlled tests, analyze coexistence, emulate multiple propagation paths, and model dependable channel conditions. Additionally, the platform supports test automation to facilitate efficient and systematic experimentation. This paper describes the extended architecture, implementation, and performance evaluation of the APTB testbed. The APTB testbed provides a reliable and efficient solution for testing wireless communication networks under various scenarios. The implementation and performance verification of the testbed demonstrate its effectiveness and usefulness for researchers and industry practitioners.\",\"PeriodicalId\":174443,\"journal\":{\"name\":\"2023 IEEE 21st International Conference on Industrial Informatics (INDIN)\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE 21st International Conference on Industrial Informatics (INDIN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INDIN51400.2023.10218143\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 21st International Conference on Industrial Informatics (INDIN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDIN51400.2023.10218143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Automated Physical TestBeds (APTB 2.0): Enabling Reliable and Efficient Testing of Wireless Communication Networks for IoT and Industry 4.0
Wireless communication networks are crucial for enabling megatrends like the Internet of Things (IoT) and Industry 4.0. However, testing these networks can be challenging due to the complex network topology and RF characteristics, requiring a multitude of scenarios to be tested. To address this challenge, the authors developed and extended an automated testbed called Automated Physical TestBed (APTB). This testbed provides the means to conduct controlled tests, analyze coexistence, emulate multiple propagation paths, and model dependable channel conditions. Additionally, the platform supports test automation to facilitate efficient and systematic experimentation. This paper describes the extended architecture, implementation, and performance evaluation of the APTB testbed. The APTB testbed provides a reliable and efficient solution for testing wireless communication networks under various scenarios. The implementation and performance verification of the testbed demonstrate its effectiveness and usefulness for researchers and industry practitioners.