一种正式的代码优化方法

A. Aho, R. Sethi, J. Ullman
{"title":"一种正式的代码优化方法","authors":"A. Aho, R. Sethi, J. Ullman","doi":"10.1145/800028.808486","DOIUrl":null,"url":null,"abstract":"We examine from a formal point of view some problems which arise in code optimization and present some of the results which can come from such an approach. Specifically, a set of transformations which characterize optimization algorithms for straight line code is presented. Then we present an algorithm which produces machine code for evaluating arithmetic expressions on machines with N ≥ 1 general purpose registers. We can prove that this algorithm produces optimal code when the cost criterion is the length of machine code generated.","PeriodicalId":399752,"journal":{"name":"Proceedings of a symposium on Compiler optimization","volume":"88 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1970-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"A formal approach to code optimization\",\"authors\":\"A. Aho, R. Sethi, J. Ullman\",\"doi\":\"10.1145/800028.808486\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We examine from a formal point of view some problems which arise in code optimization and present some of the results which can come from such an approach. Specifically, a set of transformations which characterize optimization algorithms for straight line code is presented. Then we present an algorithm which produces machine code for evaluating arithmetic expressions on machines with N ≥ 1 general purpose registers. We can prove that this algorithm produces optimal code when the cost criterion is the length of machine code generated.\",\"PeriodicalId\":399752,\"journal\":{\"name\":\"Proceedings of a symposium on Compiler optimization\",\"volume\":\"88 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1970-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of a symposium on Compiler optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/800028.808486\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of a symposium on Compiler optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/800028.808486","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

我们从形式化的角度考察了代码优化中出现的一些问题,并给出了这种方法可能产生的一些结果。具体地说,给出了一组表征直线代码优化算法的变换。然后,我们提出了一种算法,该算法产生了在N≥1个通用寄存器的机器上求算术表达式的机器码。我们可以证明,当代价准则为生成的机器码长度时,该算法产生最优代码。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A formal approach to code optimization
We examine from a formal point of view some problems which arise in code optimization and present some of the results which can come from such an approach. Specifically, a set of transformations which characterize optimization algorithms for straight line code is presented. Then we present an algorithm which produces machine code for evaluating arithmetic expressions on machines with N ≥ 1 general purpose registers. We can prove that this algorithm produces optimal code when the cost criterion is the length of machine code generated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信