Renzhong Wang, Dragomir Yankov, Michael R. Evans, S. Palanisamy, Siddharth Arora, Wei Wu
{"title":"用掩模扩张卷积预测用户例程","authors":"Renzhong Wang, Dragomir Yankov, Michael R. Evans, S. Palanisamy, Siddharth Arora, Wei Wu","doi":"10.1145/3298689.3347025","DOIUrl":null,"url":null,"abstract":"Predicting users daily location visits - when and where they will go, and how long they will stay - is key for making effective location-based recommendations. Knowledge of an upcoming day allows the suggestion of relevant alternatives (e.g., a new coffee shop on the way to work) in advance, prior to a visit. This helps users make informed decisions and plan accordingly. People's visit routines, or just routines, can vary significantly from day to day, and visits from earlier in the day, week, or month may affect subsequent choices. Traditionally, routine prediction has been modeled with sequence methods, such as HMMs or more recently with RNN-based architectures. However, the problem with such architectures is that their predictive performance degrades when increasing the number of historical observations in the routine sequence. In this paper, we propose Masked-TCN (MTCN), a novel method based on time-dilated convolutional networks. The method implements custom dilations and masking which can process effectively long routine sequences, identifying recurring patterns at different resolution - hourly, daily, weekly, monthly. We demonstrate that MTCN achieves 8% improvement in accuracy over current state-of-the-art solutions on a large data set of visit routines.","PeriodicalId":215384,"journal":{"name":"Proceedings of the 13th ACM Conference on Recommender Systems","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Predicting user routines with masked dilated convolutions\",\"authors\":\"Renzhong Wang, Dragomir Yankov, Michael R. Evans, S. Palanisamy, Siddharth Arora, Wei Wu\",\"doi\":\"10.1145/3298689.3347025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Predicting users daily location visits - when and where they will go, and how long they will stay - is key for making effective location-based recommendations. Knowledge of an upcoming day allows the suggestion of relevant alternatives (e.g., a new coffee shop on the way to work) in advance, prior to a visit. This helps users make informed decisions and plan accordingly. People's visit routines, or just routines, can vary significantly from day to day, and visits from earlier in the day, week, or month may affect subsequent choices. Traditionally, routine prediction has been modeled with sequence methods, such as HMMs or more recently with RNN-based architectures. However, the problem with such architectures is that their predictive performance degrades when increasing the number of historical observations in the routine sequence. In this paper, we propose Masked-TCN (MTCN), a novel method based on time-dilated convolutional networks. The method implements custom dilations and masking which can process effectively long routine sequences, identifying recurring patterns at different resolution - hourly, daily, weekly, monthly. We demonstrate that MTCN achieves 8% improvement in accuracy over current state-of-the-art solutions on a large data set of visit routines.\",\"PeriodicalId\":215384,\"journal\":{\"name\":\"Proceedings of the 13th ACM Conference on Recommender Systems\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 13th ACM Conference on Recommender Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3298689.3347025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 13th ACM Conference on Recommender Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3298689.3347025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Predicting user routines with masked dilated convolutions
Predicting users daily location visits - when and where they will go, and how long they will stay - is key for making effective location-based recommendations. Knowledge of an upcoming day allows the suggestion of relevant alternatives (e.g., a new coffee shop on the way to work) in advance, prior to a visit. This helps users make informed decisions and plan accordingly. People's visit routines, or just routines, can vary significantly from day to day, and visits from earlier in the day, week, or month may affect subsequent choices. Traditionally, routine prediction has been modeled with sequence methods, such as HMMs or more recently with RNN-based architectures. However, the problem with such architectures is that their predictive performance degrades when increasing the number of historical observations in the routine sequence. In this paper, we propose Masked-TCN (MTCN), a novel method based on time-dilated convolutional networks. The method implements custom dilations and masking which can process effectively long routine sequences, identifying recurring patterns at different resolution - hourly, daily, weekly, monthly. We demonstrate that MTCN achieves 8% improvement in accuracy over current state-of-the-art solutions on a large data set of visit routines.