{"title":"一种推荐算法:应用于类yang - baxter方程的梯度递归神经网络","authors":"Ying Liufu, Long Jin, Mei Liu, Shuai Li","doi":"10.1109/ICDMW51313.2020.00031","DOIUrl":null,"url":null,"abstract":"In this article, a traditional recommender algorithm termed gradient recurrent neural network (GRNN) model is introduced. Allowing for numerous practical problems such as the problems related to recommender systems or multi-agent systems that can be turned into matrix equation problems to resolve, the GRNN model becomes a more critical and promising role. The GRNN model, designed with the assistance of a square-norm-based energy function, is quite applicable to a recommender system and substantiated to be high-efficient in solving convex optimization linear or nonlinear problems. Simultaneously, implementing elaborately a theoretical analysis and numerical experiment computational simulation, the inherent exponential and stable convergence of the GRNN model is validated. With the aid of it, a theoretical nontrivial solution of the Yang-Baxter-like matrix equation $XAX=AXA$ can be obtained successfully.","PeriodicalId":426846,"journal":{"name":"2020 International Conference on Data Mining Workshops (ICDMW)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Recommender Algorithm: Gradient Recurrent Neural Network Applied to Yang-Baxter-Like Equation\",\"authors\":\"Ying Liufu, Long Jin, Mei Liu, Shuai Li\",\"doi\":\"10.1109/ICDMW51313.2020.00031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, a traditional recommender algorithm termed gradient recurrent neural network (GRNN) model is introduced. Allowing for numerous practical problems such as the problems related to recommender systems or multi-agent systems that can be turned into matrix equation problems to resolve, the GRNN model becomes a more critical and promising role. The GRNN model, designed with the assistance of a square-norm-based energy function, is quite applicable to a recommender system and substantiated to be high-efficient in solving convex optimization linear or nonlinear problems. Simultaneously, implementing elaborately a theoretical analysis and numerical experiment computational simulation, the inherent exponential and stable convergence of the GRNN model is validated. With the aid of it, a theoretical nontrivial solution of the Yang-Baxter-like matrix equation $XAX=AXA$ can be obtained successfully.\",\"PeriodicalId\":426846,\"journal\":{\"name\":\"2020 International Conference on Data Mining Workshops (ICDMW)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference on Data Mining Workshops (ICDMW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDMW51313.2020.00031\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Data Mining Workshops (ICDMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW51313.2020.00031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Recommender Algorithm: Gradient Recurrent Neural Network Applied to Yang-Baxter-Like Equation
In this article, a traditional recommender algorithm termed gradient recurrent neural network (GRNN) model is introduced. Allowing for numerous practical problems such as the problems related to recommender systems or multi-agent systems that can be turned into matrix equation problems to resolve, the GRNN model becomes a more critical and promising role. The GRNN model, designed with the assistance of a square-norm-based energy function, is quite applicable to a recommender system and substantiated to be high-efficient in solving convex optimization linear or nonlinear problems. Simultaneously, implementing elaborately a theoretical analysis and numerical experiment computational simulation, the inherent exponential and stable convergence of the GRNN model is validated. With the aid of it, a theoretical nontrivial solution of the Yang-Baxter-like matrix equation $XAX=AXA$ can be obtained successfully.