二阶抽象句法的e统一

Nikolai Kudasov
{"title":"二阶抽象句法的e统一","authors":"Nikolai Kudasov","doi":"10.48550/arXiv.2302.05815","DOIUrl":null,"url":null,"abstract":"Higher-order unification (HOU) concerns unification of (extensions of) $\\lambda$-calculus and can be seen as an instance of equational unification ($E$-unification) modulo $\\beta\\eta$-equivalence of $\\lambda$-terms. We study equational unification of terms in languages with arbitrary variable binding constructions modulo arbitrary second-order equational theories. Abstract syntax with general variable binding and parametrised metavariables allows us to work with arbitrary binders without committing to $\\lambda$-calculus or use inconvenient and error-prone term encodings, leading to a more flexible framework. In this paper, we introduce $E$-unification for second-order abstract syntax and describe a unification procedure for such problems, merging ideas from both full HOU and general $E$-unification. We prove that the procedure is sound and complete.","PeriodicalId":284975,"journal":{"name":"International Conference on Formal Structures for Computation and Deduction","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"E-unification for Second-Order Abstract Syntax\",\"authors\":\"Nikolai Kudasov\",\"doi\":\"10.48550/arXiv.2302.05815\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Higher-order unification (HOU) concerns unification of (extensions of) $\\\\lambda$-calculus and can be seen as an instance of equational unification ($E$-unification) modulo $\\\\beta\\\\eta$-equivalence of $\\\\lambda$-terms. We study equational unification of terms in languages with arbitrary variable binding constructions modulo arbitrary second-order equational theories. Abstract syntax with general variable binding and parametrised metavariables allows us to work with arbitrary binders without committing to $\\\\lambda$-calculus or use inconvenient and error-prone term encodings, leading to a more flexible framework. In this paper, we introduce $E$-unification for second-order abstract syntax and describe a unification procedure for such problems, merging ideas from both full HOU and general $E$-unification. We prove that the procedure is sound and complete.\",\"PeriodicalId\":284975,\"journal\":{\"name\":\"International Conference on Formal Structures for Computation and Deduction\",\"volume\":\"67 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Formal Structures for Computation and Deduction\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2302.05815\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Formal Structures for Computation and Deduction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2302.05815","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

高阶统一(HOU)涉及$\lambda$ -微积分的统一(扩展),可以看作是方程统一($E$ -统一)模$\beta\eta$ - $\lambda$ -项等价的一个实例。利用任意二阶方程理论,研究了具有任意变量绑定结构的语言项的方程统一问题。具有一般变量绑定和参数化元变量的抽象语法允许我们使用任意绑定器,而无需提交$\lambda$ -演算或使用不方便且容易出错的术语编码,从而产生更灵活的框架。在本文中,我们引入了二阶抽象语法的$E$ -统一,并描述了这类问题的统一过程,融合了完全HOU和一般$E$ -统一的思想。我们证明该程序是健全和完整的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
E-unification for Second-Order Abstract Syntax
Higher-order unification (HOU) concerns unification of (extensions of) $\lambda$-calculus and can be seen as an instance of equational unification ($E$-unification) modulo $\beta\eta$-equivalence of $\lambda$-terms. We study equational unification of terms in languages with arbitrary variable binding constructions modulo arbitrary second-order equational theories. Abstract syntax with general variable binding and parametrised metavariables allows us to work with arbitrary binders without committing to $\lambda$-calculus or use inconvenient and error-prone term encodings, leading to a more flexible framework. In this paper, we introduce $E$-unification for second-order abstract syntax and describe a unification procedure for such problems, merging ideas from both full HOU and general $E$-unification. We prove that the procedure is sound and complete.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信