{"title":"平行渐进式辐射的实现结果及分析","authors":"P. Guitton, J. Roman, Gilles Subrenat","doi":"10.1145/218327.218334","DOIUrl":null,"url":null,"abstract":"The quality of synthetic images depends, first, on the quality of the modelling of the three-dimensional scenes to visualize; more numerous are the geometrical and optical details, more realistic are the resulting images. Unfortunately, such scene descriptions need a big amount of memory, as well as a long time of computation. In order to deal with these restrictions, we propose a parallel implementation for an extended stochastic progressive radiosity method, where form factors are computed with a ray tracing scheme, on a network of processors with a distributed memory and a message passing mechanism. Our program has already treated very big scenes (more than one million patches for example).","PeriodicalId":101947,"journal":{"name":"Proceedings of the IEEE symposium on Parallel rendering","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Implementation results and analysis of a parallel progressive radiosity\",\"authors\":\"P. Guitton, J. Roman, Gilles Subrenat\",\"doi\":\"10.1145/218327.218334\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The quality of synthetic images depends, first, on the quality of the modelling of the three-dimensional scenes to visualize; more numerous are the geometrical and optical details, more realistic are the resulting images. Unfortunately, such scene descriptions need a big amount of memory, as well as a long time of computation. In order to deal with these restrictions, we propose a parallel implementation for an extended stochastic progressive radiosity method, where form factors are computed with a ray tracing scheme, on a network of processors with a distributed memory and a message passing mechanism. Our program has already treated very big scenes (more than one million patches for example).\",\"PeriodicalId\":101947,\"journal\":{\"name\":\"Proceedings of the IEEE symposium on Parallel rendering\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the IEEE symposium on Parallel rendering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/218327.218334\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IEEE symposium on Parallel rendering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/218327.218334","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Implementation results and analysis of a parallel progressive radiosity
The quality of synthetic images depends, first, on the quality of the modelling of the three-dimensional scenes to visualize; more numerous are the geometrical and optical details, more realistic are the resulting images. Unfortunately, such scene descriptions need a big amount of memory, as well as a long time of computation. In order to deal with these restrictions, we propose a parallel implementation for an extended stochastic progressive radiosity method, where form factors are computed with a ray tracing scheme, on a network of processors with a distributed memory and a message passing mechanism. Our program has already treated very big scenes (more than one million patches for example).